Description: If the image of a set under a relation-preserving function is well-founded, so is the set. See isofr for a bidirectional statement. A more general version of Lemma I.9.9 of Kunen2 p. 47. (Contributed by Eric Schmidt, 11-Oct-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | relpfr | ⊢ ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑆 Fr 𝐵 → 𝑅 Fr 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | ⊢ ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
2 | relpf | ⊢ ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 ⟶ 𝐵 ) | |
3 | ffun | ⊢ ( 𝐻 : 𝐴 ⟶ 𝐵 → Fun 𝐻 ) | |
4 | vex | ⊢ 𝑥 ∈ V | |
5 | 4 | funimaex | ⊢ ( Fun 𝐻 → ( 𝐻 “ 𝑥 ) ∈ V ) |
6 | 2 3 5 | 3syl | ⊢ ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐻 “ 𝑥 ) ∈ V ) |
7 | 1 6 | relpfrlem | ⊢ ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑆 Fr 𝐵 → 𝑅 Fr 𝐴 ) ) |