Metamath Proof Explorer


Theorem relpfr

Description: If the image of a set under a relation-preserving function is well-founded, so is the set. See isofr for a bidirectional statement. A more general version of Lemma I.9.9 of Kunen2 p. 47. (Contributed by Eric Schmidt, 11-Oct-2025)

Ref Expression
Assertion relpfr ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑆 Fr 𝐵𝑅 Fr 𝐴 ) )

Proof

Step Hyp Ref Expression
1 id ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) )
2 relpf ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴𝐵 )
3 ffun ( 𝐻 : 𝐴𝐵 → Fun 𝐻 )
4 vex 𝑥 ∈ V
5 4 funimaex ( Fun 𝐻 → ( 𝐻𝑥 ) ∈ V )
6 2 3 5 3syl ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐻𝑥 ) ∈ V )
7 1 6 relpfrlem ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑆 Fr 𝐵𝑅 Fr 𝐴 ) )