Metamath Proof Explorer


Theorem relpfrlem

Description: Lemma for relpfr . Proved without using the Axiom of Replacement. This is isofrlem with weaker hypotheses. (Contributed by Eric Schmidt, 11-Oct-2025)

Ref Expression
Hypotheses relpfrlem.1 ( 𝜑𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) )
relpfrlem.2 ( 𝜑 → ( 𝐻𝑥 ) ∈ V )
Assertion relpfrlem ( 𝜑 → ( 𝑆 Fr 𝐵𝑅 Fr 𝐴 ) )

Proof

Step Hyp Ref Expression
1 relpfrlem.1 ( 𝜑𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) )
2 relpfrlem.2 ( 𝜑 → ( 𝐻𝑥 ) ∈ V )
3 relpf ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴𝐵 )
4 1 3 syl ( 𝜑𝐻 : 𝐴𝐵 )
5 ffn ( 𝐻 : 𝐴𝐵𝐻 Fn 𝐴 )
6 n0 ( 𝑥 ≠ ∅ ↔ ∃ 𝑦 𝑦𝑥 )
7 fnfvima ( ( 𝐻 Fn 𝐴𝑥𝐴𝑦𝑥 ) → ( 𝐻𝑦 ) ∈ ( 𝐻𝑥 ) )
8 7 ne0d ( ( 𝐻 Fn 𝐴𝑥𝐴𝑦𝑥 ) → ( 𝐻𝑥 ) ≠ ∅ )
9 8 3expia ( ( 𝐻 Fn 𝐴𝑥𝐴 ) → ( 𝑦𝑥 → ( 𝐻𝑥 ) ≠ ∅ ) )
10 9 exlimdv ( ( 𝐻 Fn 𝐴𝑥𝐴 ) → ( ∃ 𝑦 𝑦𝑥 → ( 𝐻𝑥 ) ≠ ∅ ) )
11 6 10 biimtrid ( ( 𝐻 Fn 𝐴𝑥𝐴 ) → ( 𝑥 ≠ ∅ → ( 𝐻𝑥 ) ≠ ∅ ) )
12 11 expimpd ( 𝐻 Fn 𝐴 → ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ( 𝐻𝑥 ) ≠ ∅ ) )
13 5 12 syl ( 𝐻 : 𝐴𝐵 → ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ( 𝐻𝑥 ) ≠ ∅ ) )
14 fimass ( 𝐻 : 𝐴𝐵 → ( 𝐻𝑥 ) ⊆ 𝐵 )
15 13 14 jctild ( 𝐻 : 𝐴𝐵 → ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ( ( 𝐻𝑥 ) ⊆ 𝐵 ∧ ( 𝐻𝑥 ) ≠ ∅ ) ) )
16 4 15 syl ( 𝜑 → ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ( ( 𝐻𝑥 ) ⊆ 𝐵 ∧ ( 𝐻𝑥 ) ≠ ∅ ) ) )
17 dffr3 ( 𝑆 Fr 𝐵 ↔ ∀ 𝑧 ( ( 𝑧𝐵𝑧 ≠ ∅ ) → ∃ 𝑤𝑧 ( 𝑧 ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) )
18 sseq1 ( 𝑧 = ( 𝐻𝑥 ) → ( 𝑧𝐵 ↔ ( 𝐻𝑥 ) ⊆ 𝐵 ) )
19 neeq1 ( 𝑧 = ( 𝐻𝑥 ) → ( 𝑧 ≠ ∅ ↔ ( 𝐻𝑥 ) ≠ ∅ ) )
20 18 19 anbi12d ( 𝑧 = ( 𝐻𝑥 ) → ( ( 𝑧𝐵𝑧 ≠ ∅ ) ↔ ( ( 𝐻𝑥 ) ⊆ 𝐵 ∧ ( 𝐻𝑥 ) ≠ ∅ ) ) )
21 ineq1 ( 𝑧 = ( 𝐻𝑥 ) → ( 𝑧 ∩ ( 𝑆 “ { 𝑤 } ) ) = ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) )
22 21 eqeq1d ( 𝑧 = ( 𝐻𝑥 ) → ( ( 𝑧 ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ↔ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) )
23 22 rexeqbi1dv ( 𝑧 = ( 𝐻𝑥 ) → ( ∃ 𝑤𝑧 ( 𝑧 ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ↔ ∃ 𝑤 ∈ ( 𝐻𝑥 ) ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) )
24 20 23 imbi12d ( 𝑧 = ( 𝐻𝑥 ) → ( ( ( 𝑧𝐵𝑧 ≠ ∅ ) → ∃ 𝑤𝑧 ( 𝑧 ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) ↔ ( ( ( 𝐻𝑥 ) ⊆ 𝐵 ∧ ( 𝐻𝑥 ) ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻𝑥 ) ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) ) )
25 24 spcgv ( ( 𝐻𝑥 ) ∈ V → ( ∀ 𝑧 ( ( 𝑧𝐵𝑧 ≠ ∅ ) → ∃ 𝑤𝑧 ( 𝑧 ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( ( ( 𝐻𝑥 ) ⊆ 𝐵 ∧ ( 𝐻𝑥 ) ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻𝑥 ) ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) ) )
26 2 25 syl ( 𝜑 → ( ∀ 𝑧 ( ( 𝑧𝐵𝑧 ≠ ∅ ) → ∃ 𝑤𝑧 ( 𝑧 ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( ( ( 𝐻𝑥 ) ⊆ 𝐵 ∧ ( 𝐻𝑥 ) ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻𝑥 ) ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) ) )
27 17 26 biimtrid ( 𝜑 → ( 𝑆 Fr 𝐵 → ( ( ( 𝐻𝑥 ) ⊆ 𝐵 ∧ ( 𝐻𝑥 ) ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻𝑥 ) ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) ) )
28 16 27 syl5d ( 𝜑 → ( 𝑆 Fr 𝐵 → ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻𝑥 ) ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) ) )
29 4 adantr ( ( 𝜑𝑥𝐴 ) → 𝐻 : 𝐴𝐵 )
30 29 ffund ( ( 𝜑𝑥𝐴 ) → Fun 𝐻 )
31 simpl ( ( 𝑤 ∈ ( 𝐻𝑥 ) ∧ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) → 𝑤 ∈ ( 𝐻𝑥 ) )
32 fvelima ( ( Fun 𝐻𝑤 ∈ ( 𝐻𝑥 ) ) → ∃ 𝑦𝑥 ( 𝐻𝑦 ) = 𝑤 )
33 30 31 32 syl2an ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑤 ∈ ( 𝐻𝑥 ) ∧ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) ) → ∃ 𝑦𝑥 ( 𝐻𝑦 ) = 𝑤 )
34 sneq ( 𝑤 = ( 𝐻𝑦 ) → { 𝑤 } = { ( 𝐻𝑦 ) } )
35 34 eqcoms ( ( 𝐻𝑦 ) = 𝑤 → { 𝑤 } = { ( 𝐻𝑦 ) } )
36 35 imaeq2d ( ( 𝐻𝑦 ) = 𝑤 → ( 𝑆 “ { 𝑤 } ) = ( 𝑆 “ { ( 𝐻𝑦 ) } ) )
37 36 ineq2d ( ( 𝐻𝑦 ) = 𝑤 → ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { ( 𝐻𝑦 ) } ) ) )
38 37 eqeq1d ( ( 𝐻𝑦 ) = 𝑤 → ( ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ↔ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { ( 𝐻𝑦 ) } ) ) = ∅ ) )
39 38 biimpd ( ( 𝐻𝑦 ) = 𝑤 → ( ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ → ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { ( 𝐻𝑦 ) } ) ) = ∅ ) )
40 ssel ( 𝑥𝐴 → ( 𝑦𝑥𝑦𝐴 ) )
41 40 imdistani ( ( 𝑥𝐴𝑦𝑥 ) → ( 𝑥𝐴𝑦𝐴 ) )
42 relpmin ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { ( 𝐻𝑦 ) } ) ) = ∅ → ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) )
43 1 41 42 syl2an ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝑥 ) ) → ( ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { ( 𝐻𝑦 ) } ) ) = ∅ → ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) )
44 39 43 sylan9r ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝑥 ) ) ∧ ( 𝐻𝑦 ) = 𝑤 ) → ( ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ → ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) )
45 44 adantld ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝑥 ) ) ∧ ( 𝐻𝑦 ) = 𝑤 ) → ( ( 𝑤 ∈ ( 𝐻𝑥 ) ∧ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) )
46 45 exp42 ( 𝜑 → ( 𝑥𝐴 → ( 𝑦𝑥 → ( ( 𝐻𝑦 ) = 𝑤 → ( ( 𝑤 ∈ ( 𝐻𝑥 ) ∧ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) ) )
47 46 imp ( ( 𝜑𝑥𝐴 ) → ( 𝑦𝑥 → ( ( 𝐻𝑦 ) = 𝑤 → ( ( 𝑤 ∈ ( 𝐻𝑥 ) ∧ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) )
48 47 com3l ( 𝑦𝑥 → ( ( 𝐻𝑦 ) = 𝑤 → ( ( 𝜑𝑥𝐴 ) → ( ( 𝑤 ∈ ( 𝐻𝑥 ) ∧ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) )
49 48 com4t ( ( 𝜑𝑥𝐴 ) → ( ( 𝑤 ∈ ( 𝐻𝑥 ) ∧ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( 𝑦𝑥 → ( ( 𝐻𝑦 ) = 𝑤 → ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) )
50 49 imp ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑤 ∈ ( 𝐻𝑥 ) ∧ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) ) → ( 𝑦𝑥 → ( ( 𝐻𝑦 ) = 𝑤 → ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) ) )
51 50 reximdvai ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑤 ∈ ( 𝐻𝑥 ) ∧ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) ) → ( ∃ 𝑦𝑥 ( 𝐻𝑦 ) = 𝑤 → ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) )
52 33 51 mpd ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝑤 ∈ ( 𝐻𝑥 ) ∧ ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) ) → ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ )
53 52 rexlimdvaa ( ( 𝜑𝑥𝐴 ) → ( ∃ 𝑤 ∈ ( 𝐻𝑥 ) ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ → ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) )
54 53 ex ( 𝜑 → ( 𝑥𝐴 → ( ∃ 𝑤 ∈ ( 𝐻𝑥 ) ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ → ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) ) )
55 54 adantrd ( 𝜑 → ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ( ∃ 𝑤 ∈ ( 𝐻𝑥 ) ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ → ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) ) )
56 55 a2d ( 𝜑 → ( ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻𝑥 ) ( ( 𝐻𝑥 ) ∩ ( 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) ) )
57 28 56 syld ( 𝜑 → ( 𝑆 Fr 𝐵 → ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) ) )
58 57 alrimdv ( 𝜑 → ( 𝑆 Fr 𝐵 → ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) ) )
59 dffr3 ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ∃ 𝑦𝑥 ( 𝑥 ∩ ( 𝑅 “ { 𝑦 } ) ) = ∅ ) )
60 58 59 imbitrrdi ( 𝜑 → ( 𝑆 Fr 𝐵𝑅 Fr 𝐴 ) )