Step |
Hyp |
Ref |
Expression |
1 |
|
neq0 |
⊢ ( ¬ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) = ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ) |
2 |
|
relpf |
⊢ ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 ⟶ 𝐵 ) |
3 |
2
|
ffnd |
⊢ ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Fn 𝐴 ) |
4 |
|
fnfvima |
⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐻 ‘ 𝑥 ) ∈ ( 𝐻 “ 𝐶 ) ) |
5 |
4
|
3expia |
⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝑥 ∈ 𝐶 → ( 𝐻 ‘ 𝑥 ) ∈ ( 𝐻 “ 𝐶 ) ) ) |
6 |
5
|
adantrr |
⊢ ( ( 𝐻 Fn 𝐴 ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝐶 → ( 𝐻 ‘ 𝑥 ) ∈ ( 𝐻 “ 𝐶 ) ) ) |
7 |
3 6
|
sylan |
⊢ ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝐶 → ( 𝐻 ‘ 𝑥 ) ∈ ( 𝐻 “ 𝐶 ) ) ) |
8 |
7
|
adantrd |
⊢ ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ( 𝐻 “ 𝐶 ) ) ) |
9 |
|
ssel |
⊢ ( 𝐶 ⊆ 𝐴 → ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) ) |
10 |
|
vex |
⊢ 𝑥 ∈ V |
11 |
10
|
eliniseg |
⊢ ( 𝐷 ∈ 𝐴 → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ↔ 𝑥 𝑅 𝐷 ) ) |
12 |
11
|
ad2antll |
⊢ ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ↔ 𝑥 𝑅 𝐷 ) ) |
13 |
|
relprel |
⊢ ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝐷 → ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
14 |
|
fvex |
⊢ ( 𝐻 ‘ 𝐷 ) ∈ V |
15 |
|
fvex |
⊢ ( 𝐻 ‘ 𝑥 ) ∈ V |
16 |
15
|
eliniseg |
⊢ ( ( 𝐻 ‘ 𝐷 ) ∈ V → ( ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
17 |
14 16
|
ax-mp |
⊢ ( ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) |
18 |
13 17
|
imbitrrdi |
⊢ ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝐷 → ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) |
19 |
12 18
|
sylbid |
⊢ ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) |
20 |
19
|
exp32 |
⊢ ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝐷 ∈ 𝐴 → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) ) ) |
21 |
9 20
|
syl9r |
⊢ ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐶 ⊆ 𝐴 → ( 𝑥 ∈ 𝐶 → ( 𝐷 ∈ 𝐴 → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) ) ) ) |
22 |
21
|
com34 |
⊢ ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐶 ⊆ 𝐴 → ( 𝐷 ∈ 𝐴 → ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) ) ) ) |
23 |
22
|
imp32 |
⊢ ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ 𝐶 → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) ) |
24 |
23
|
impd |
⊢ ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) |
25 |
8 24
|
jcad |
⊢ ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) → ( ( 𝐻 ‘ 𝑥 ) ∈ ( 𝐻 “ 𝐶 ) ∧ ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) ) |
26 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) |
27 |
|
elin |
⊢ ( ( 𝐻 ‘ 𝑥 ) ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ↔ ( ( 𝐻 ‘ 𝑥 ) ∈ ( 𝐻 “ 𝐶 ) ∧ ( 𝐻 ‘ 𝑥 ) ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) |
28 |
25 26 27
|
3imtr4g |
⊢ ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) ) |
29 |
|
n0i |
⊢ ( ( 𝐻 ‘ 𝑥 ) ∈ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) → ¬ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ ) |
30 |
28 29
|
syl6 |
⊢ ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 ∈ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) → ¬ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ ) ) |
31 |
30
|
exlimdv |
⊢ ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ∃ 𝑥 𝑥 ∈ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) → ¬ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ ) ) |
32 |
1 31
|
biimtrid |
⊢ ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ¬ ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) = ∅ → ¬ ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ ) ) |
33 |
32
|
con4d |
⊢ ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( ( 𝐻 “ 𝐶 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = ∅ → ( 𝐶 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) = ∅ ) ) |