Metamath Proof Explorer


Theorem relpmin

Description: A preimage of a minimal element under a relation-preserving function is minimal. Essentially one half of isomin . (Contributed by Eric Schmidt, 11-Oct-2025)

Ref Expression
Assertion relpmin ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( ( ( 𝐻𝐶 ) ∩ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) = ∅ → ( 𝐶 ∩ ( 𝑅 “ { 𝐷 } ) ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 neq0 ( ¬ ( 𝐶 ∩ ( 𝑅 “ { 𝐷 } ) ) = ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐶 ∩ ( 𝑅 “ { 𝐷 } ) ) )
2 relpf ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴𝐵 )
3 2 ffnd ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Fn 𝐴 )
4 fnfvima ( ( 𝐻 Fn 𝐴𝐶𝐴𝑥𝐶 ) → ( 𝐻𝑥 ) ∈ ( 𝐻𝐶 ) )
5 4 3expia ( ( 𝐻 Fn 𝐴𝐶𝐴 ) → ( 𝑥𝐶 → ( 𝐻𝑥 ) ∈ ( 𝐻𝐶 ) ) )
6 5 adantrr ( ( 𝐻 Fn 𝐴 ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( 𝑥𝐶 → ( 𝐻𝑥 ) ∈ ( 𝐻𝐶 ) ) )
7 3 6 sylan ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( 𝑥𝐶 → ( 𝐻𝑥 ) ∈ ( 𝐻𝐶 ) ) )
8 7 adantrd ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( ( 𝑥𝐶𝑥 ∈ ( 𝑅 “ { 𝐷 } ) ) → ( 𝐻𝑥 ) ∈ ( 𝐻𝐶 ) ) )
9 ssel ( 𝐶𝐴 → ( 𝑥𝐶𝑥𝐴 ) )
10 vex 𝑥 ∈ V
11 10 eliniseg ( 𝐷𝐴 → ( 𝑥 ∈ ( 𝑅 “ { 𝐷 } ) ↔ 𝑥 𝑅 𝐷 ) )
12 11 ad2antll ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥𝐴𝐷𝐴 ) ) → ( 𝑥 ∈ ( 𝑅 “ { 𝐷 } ) ↔ 𝑥 𝑅 𝐷 ) )
13 relprel ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥𝐴𝐷𝐴 ) ) → ( 𝑥 𝑅 𝐷 → ( 𝐻𝑥 ) 𝑆 ( 𝐻𝐷 ) ) )
14 fvex ( 𝐻𝐷 ) ∈ V
15 fvex ( 𝐻𝑥 ) ∈ V
16 15 eliniseg ( ( 𝐻𝐷 ) ∈ V → ( ( 𝐻𝑥 ) ∈ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ↔ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝐷 ) ) )
17 14 16 ax-mp ( ( 𝐻𝑥 ) ∈ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ↔ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝐷 ) )
18 13 17 imbitrrdi ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥𝐴𝐷𝐴 ) ) → ( 𝑥 𝑅 𝐷 → ( 𝐻𝑥 ) ∈ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) )
19 12 18 sylbid ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥𝐴𝐷𝐴 ) ) → ( 𝑥 ∈ ( 𝑅 “ { 𝐷 } ) → ( 𝐻𝑥 ) ∈ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) )
20 19 exp32 ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑥𝐴 → ( 𝐷𝐴 → ( 𝑥 ∈ ( 𝑅 “ { 𝐷 } ) → ( 𝐻𝑥 ) ∈ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) ) ) )
21 9 20 syl9r ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐶𝐴 → ( 𝑥𝐶 → ( 𝐷𝐴 → ( 𝑥 ∈ ( 𝑅 “ { 𝐷 } ) → ( 𝐻𝑥 ) ∈ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) ) ) ) )
22 21 com34 ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐶𝐴 → ( 𝐷𝐴 → ( 𝑥𝐶 → ( 𝑥 ∈ ( 𝑅 “ { 𝐷 } ) → ( 𝐻𝑥 ) ∈ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) ) ) ) )
23 22 imp32 ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( 𝑥𝐶 → ( 𝑥 ∈ ( 𝑅 “ { 𝐷 } ) → ( 𝐻𝑥 ) ∈ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) ) )
24 23 impd ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( ( 𝑥𝐶𝑥 ∈ ( 𝑅 “ { 𝐷 } ) ) → ( 𝐻𝑥 ) ∈ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) )
25 8 24 jcad ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( ( 𝑥𝐶𝑥 ∈ ( 𝑅 “ { 𝐷 } ) ) → ( ( 𝐻𝑥 ) ∈ ( 𝐻𝐶 ) ∧ ( 𝐻𝑥 ) ∈ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) ) )
26 elin ( 𝑥 ∈ ( 𝐶 ∩ ( 𝑅 “ { 𝐷 } ) ) ↔ ( 𝑥𝐶𝑥 ∈ ( 𝑅 “ { 𝐷 } ) ) )
27 elin ( ( 𝐻𝑥 ) ∈ ( ( 𝐻𝐶 ) ∩ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) ↔ ( ( 𝐻𝑥 ) ∈ ( 𝐻𝐶 ) ∧ ( 𝐻𝑥 ) ∈ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) )
28 25 26 27 3imtr4g ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( 𝑥 ∈ ( 𝐶 ∩ ( 𝑅 “ { 𝐷 } ) ) → ( 𝐻𝑥 ) ∈ ( ( 𝐻𝐶 ) ∩ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) ) )
29 n0i ( ( 𝐻𝑥 ) ∈ ( ( 𝐻𝐶 ) ∩ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) → ¬ ( ( 𝐻𝐶 ) ∩ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) = ∅ )
30 28 29 syl6 ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( 𝑥 ∈ ( 𝐶 ∩ ( 𝑅 “ { 𝐷 } ) ) → ¬ ( ( 𝐻𝐶 ) ∩ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) = ∅ ) )
31 30 exlimdv ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( ∃ 𝑥 𝑥 ∈ ( 𝐶 ∩ ( 𝑅 “ { 𝐷 } ) ) → ¬ ( ( 𝐻𝐶 ) ∩ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) = ∅ ) )
32 1 31 biimtrid ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( ¬ ( 𝐶 ∩ ( 𝑅 “ { 𝐷 } ) ) = ∅ → ¬ ( ( 𝐻𝐶 ) ∩ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) = ∅ ) )
33 32 con4d ( ( 𝐻 RelPres 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( ( ( 𝐻𝐶 ) ∩ ( 𝑆 “ { ( 𝐻𝐷 ) } ) ) = ∅ → ( 𝐶 ∩ ( 𝑅 “ { 𝐷 } ) ) = ∅ ) )