Step |
Hyp |
Ref |
Expression |
1 |
|
neq0 |
|- ( -. ( C i^i ( `' R " { D } ) ) = (/) <-> E. x x e. ( C i^i ( `' R " { D } ) ) ) |
2 |
|
relpf |
|- ( H RelPres R , S ( A , B ) -> H : A --> B ) |
3 |
2
|
ffnd |
|- ( H RelPres R , S ( A , B ) -> H Fn A ) |
4 |
|
fnfvima |
|- ( ( H Fn A /\ C C_ A /\ x e. C ) -> ( H ` x ) e. ( H " C ) ) |
5 |
4
|
3expia |
|- ( ( H Fn A /\ C C_ A ) -> ( x e. C -> ( H ` x ) e. ( H " C ) ) ) |
6 |
5
|
adantrr |
|- ( ( H Fn A /\ ( C C_ A /\ D e. A ) ) -> ( x e. C -> ( H ` x ) e. ( H " C ) ) ) |
7 |
3 6
|
sylan |
|- ( ( H RelPres R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( x e. C -> ( H ` x ) e. ( H " C ) ) ) |
8 |
7
|
adantrd |
|- ( ( H RelPres R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( ( x e. C /\ x e. ( `' R " { D } ) ) -> ( H ` x ) e. ( H " C ) ) ) |
9 |
|
ssel |
|- ( C C_ A -> ( x e. C -> x e. A ) ) |
10 |
|
vex |
|- x e. _V |
11 |
10
|
eliniseg |
|- ( D e. A -> ( x e. ( `' R " { D } ) <-> x R D ) ) |
12 |
11
|
ad2antll |
|- ( ( H RelPres R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( x e. ( `' R " { D } ) <-> x R D ) ) |
13 |
|
relprel |
|- ( ( H RelPres R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( x R D -> ( H ` x ) S ( H ` D ) ) ) |
14 |
|
fvex |
|- ( H ` D ) e. _V |
15 |
|
fvex |
|- ( H ` x ) e. _V |
16 |
15
|
eliniseg |
|- ( ( H ` D ) e. _V -> ( ( H ` x ) e. ( `' S " { ( H ` D ) } ) <-> ( H ` x ) S ( H ` D ) ) ) |
17 |
14 16
|
ax-mp |
|- ( ( H ` x ) e. ( `' S " { ( H ` D ) } ) <-> ( H ` x ) S ( H ` D ) ) |
18 |
13 17
|
imbitrrdi |
|- ( ( H RelPres R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( x R D -> ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) |
19 |
12 18
|
sylbid |
|- ( ( H RelPres R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( x e. ( `' R " { D } ) -> ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) |
20 |
19
|
exp32 |
|- ( H RelPres R , S ( A , B ) -> ( x e. A -> ( D e. A -> ( x e. ( `' R " { D } ) -> ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) ) ) |
21 |
9 20
|
syl9r |
|- ( H RelPres R , S ( A , B ) -> ( C C_ A -> ( x e. C -> ( D e. A -> ( x e. ( `' R " { D } ) -> ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) ) ) ) |
22 |
21
|
com34 |
|- ( H RelPres R , S ( A , B ) -> ( C C_ A -> ( D e. A -> ( x e. C -> ( x e. ( `' R " { D } ) -> ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) ) ) ) |
23 |
22
|
imp32 |
|- ( ( H RelPres R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( x e. C -> ( x e. ( `' R " { D } ) -> ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) ) |
24 |
23
|
impd |
|- ( ( H RelPres R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( ( x e. C /\ x e. ( `' R " { D } ) ) -> ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) |
25 |
8 24
|
jcad |
|- ( ( H RelPres R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( ( x e. C /\ x e. ( `' R " { D } ) ) -> ( ( H ` x ) e. ( H " C ) /\ ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) ) |
26 |
|
elin |
|- ( x e. ( C i^i ( `' R " { D } ) ) <-> ( x e. C /\ x e. ( `' R " { D } ) ) ) |
27 |
|
elin |
|- ( ( H ` x ) e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) <-> ( ( H ` x ) e. ( H " C ) /\ ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) |
28 |
25 26 27
|
3imtr4g |
|- ( ( H RelPres R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( x e. ( C i^i ( `' R " { D } ) ) -> ( H ` x ) e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) ) ) |
29 |
|
n0i |
|- ( ( H ` x ) e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) -> -. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) ) |
30 |
28 29
|
syl6 |
|- ( ( H RelPres R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( x e. ( C i^i ( `' R " { D } ) ) -> -. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) ) ) |
31 |
30
|
exlimdv |
|- ( ( H RelPres R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( E. x x e. ( C i^i ( `' R " { D } ) ) -> -. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) ) ) |
32 |
1 31
|
biimtrid |
|- ( ( H RelPres R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( -. ( C i^i ( `' R " { D } ) ) = (/) -> -. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) ) ) |
33 |
32
|
con4d |
|- ( ( H RelPres R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) -> ( C i^i ( `' R " { D } ) ) = (/) ) ) |