Metamath Proof Explorer


Theorem relpfrlem

Description: Lemma for relpfr . Proved without using the Axiom of Replacement. This is isofrlem with weaker hypotheses. (Contributed by Eric Schmidt, 11-Oct-2025)

Ref Expression
Hypotheses relpfrlem.1
|- ( ph -> H RelPres R , S ( A , B ) )
relpfrlem.2
|- ( ph -> ( H " x ) e. _V )
Assertion relpfrlem
|- ( ph -> ( S Fr B -> R Fr A ) )

Proof

Step Hyp Ref Expression
1 relpfrlem.1
 |-  ( ph -> H RelPres R , S ( A , B ) )
2 relpfrlem.2
 |-  ( ph -> ( H " x ) e. _V )
3 relpf
 |-  ( H RelPres R , S ( A , B ) -> H : A --> B )
4 1 3 syl
 |-  ( ph -> H : A --> B )
5 ffn
 |-  ( H : A --> B -> H Fn A )
6 n0
 |-  ( x =/= (/) <-> E. y y e. x )
7 fnfvima
 |-  ( ( H Fn A /\ x C_ A /\ y e. x ) -> ( H ` y ) e. ( H " x ) )
8 7 ne0d
 |-  ( ( H Fn A /\ x C_ A /\ y e. x ) -> ( H " x ) =/= (/) )
9 8 3expia
 |-  ( ( H Fn A /\ x C_ A ) -> ( y e. x -> ( H " x ) =/= (/) ) )
10 9 exlimdv
 |-  ( ( H Fn A /\ x C_ A ) -> ( E. y y e. x -> ( H " x ) =/= (/) ) )
11 6 10 biimtrid
 |-  ( ( H Fn A /\ x C_ A ) -> ( x =/= (/) -> ( H " x ) =/= (/) ) )
12 11 expimpd
 |-  ( H Fn A -> ( ( x C_ A /\ x =/= (/) ) -> ( H " x ) =/= (/) ) )
13 5 12 syl
 |-  ( H : A --> B -> ( ( x C_ A /\ x =/= (/) ) -> ( H " x ) =/= (/) ) )
14 fimass
 |-  ( H : A --> B -> ( H " x ) C_ B )
15 13 14 jctild
 |-  ( H : A --> B -> ( ( x C_ A /\ x =/= (/) ) -> ( ( H " x ) C_ B /\ ( H " x ) =/= (/) ) ) )
16 4 15 syl
 |-  ( ph -> ( ( x C_ A /\ x =/= (/) ) -> ( ( H " x ) C_ B /\ ( H " x ) =/= (/) ) ) )
17 dffr3
 |-  ( S Fr B <-> A. z ( ( z C_ B /\ z =/= (/) ) -> E. w e. z ( z i^i ( `' S " { w } ) ) = (/) ) )
18 sseq1
 |-  ( z = ( H " x ) -> ( z C_ B <-> ( H " x ) C_ B ) )
19 neeq1
 |-  ( z = ( H " x ) -> ( z =/= (/) <-> ( H " x ) =/= (/) ) )
20 18 19 anbi12d
 |-  ( z = ( H " x ) -> ( ( z C_ B /\ z =/= (/) ) <-> ( ( H " x ) C_ B /\ ( H " x ) =/= (/) ) ) )
21 ineq1
 |-  ( z = ( H " x ) -> ( z i^i ( `' S " { w } ) ) = ( ( H " x ) i^i ( `' S " { w } ) ) )
22 21 eqeq1d
 |-  ( z = ( H " x ) -> ( ( z i^i ( `' S " { w } ) ) = (/) <-> ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) )
23 22 rexeqbi1dv
 |-  ( z = ( H " x ) -> ( E. w e. z ( z i^i ( `' S " { w } ) ) = (/) <-> E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) )
24 20 23 imbi12d
 |-  ( z = ( H " x ) -> ( ( ( z C_ B /\ z =/= (/) ) -> E. w e. z ( z i^i ( `' S " { w } ) ) = (/) ) <-> ( ( ( H " x ) C_ B /\ ( H " x ) =/= (/) ) -> E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) )
25 24 spcgv
 |-  ( ( H " x ) e. _V -> ( A. z ( ( z C_ B /\ z =/= (/) ) -> E. w e. z ( z i^i ( `' S " { w } ) ) = (/) ) -> ( ( ( H " x ) C_ B /\ ( H " x ) =/= (/) ) -> E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) )
26 2 25 syl
 |-  ( ph -> ( A. z ( ( z C_ B /\ z =/= (/) ) -> E. w e. z ( z i^i ( `' S " { w } ) ) = (/) ) -> ( ( ( H " x ) C_ B /\ ( H " x ) =/= (/) ) -> E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) )
27 17 26 biimtrid
 |-  ( ph -> ( S Fr B -> ( ( ( H " x ) C_ B /\ ( H " x ) =/= (/) ) -> E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) )
28 16 27 syl5d
 |-  ( ph -> ( S Fr B -> ( ( x C_ A /\ x =/= (/) ) -> E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) )
29 4 adantr
 |-  ( ( ph /\ x C_ A ) -> H : A --> B )
30 29 ffund
 |-  ( ( ph /\ x C_ A ) -> Fun H )
31 simpl
 |-  ( ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> w e. ( H " x ) )
32 fvelima
 |-  ( ( Fun H /\ w e. ( H " x ) ) -> E. y e. x ( H ` y ) = w )
33 30 31 32 syl2an
 |-  ( ( ( ph /\ x C_ A ) /\ ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) -> E. y e. x ( H ` y ) = w )
34 sneq
 |-  ( w = ( H ` y ) -> { w } = { ( H ` y ) } )
35 34 eqcoms
 |-  ( ( H ` y ) = w -> { w } = { ( H ` y ) } )
36 35 imaeq2d
 |-  ( ( H ` y ) = w -> ( `' S " { w } ) = ( `' S " { ( H ` y ) } ) )
37 36 ineq2d
 |-  ( ( H ` y ) = w -> ( ( H " x ) i^i ( `' S " { w } ) ) = ( ( H " x ) i^i ( `' S " { ( H ` y ) } ) ) )
38 37 eqeq1d
 |-  ( ( H ` y ) = w -> ( ( ( H " x ) i^i ( `' S " { w } ) ) = (/) <-> ( ( H " x ) i^i ( `' S " { ( H ` y ) } ) ) = (/) ) )
39 38 biimpd
 |-  ( ( H ` y ) = w -> ( ( ( H " x ) i^i ( `' S " { w } ) ) = (/) -> ( ( H " x ) i^i ( `' S " { ( H ` y ) } ) ) = (/) ) )
40 ssel
 |-  ( x C_ A -> ( y e. x -> y e. A ) )
41 40 imdistani
 |-  ( ( x C_ A /\ y e. x ) -> ( x C_ A /\ y e. A ) )
42 relpmin
 |-  ( ( H RelPres R , S ( A , B ) /\ ( x C_ A /\ y e. A ) ) -> ( ( ( H " x ) i^i ( `' S " { ( H ` y ) } ) ) = (/) -> ( x i^i ( `' R " { y } ) ) = (/) ) )
43 1 41 42 syl2an
 |-  ( ( ph /\ ( x C_ A /\ y e. x ) ) -> ( ( ( H " x ) i^i ( `' S " { ( H ` y ) } ) ) = (/) -> ( x i^i ( `' R " { y } ) ) = (/) ) )
44 39 43 sylan9r
 |-  ( ( ( ph /\ ( x C_ A /\ y e. x ) ) /\ ( H ` y ) = w ) -> ( ( ( H " x ) i^i ( `' S " { w } ) ) = (/) -> ( x i^i ( `' R " { y } ) ) = (/) ) )
45 44 adantld
 |-  ( ( ( ph /\ ( x C_ A /\ y e. x ) ) /\ ( H ` y ) = w ) -> ( ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> ( x i^i ( `' R " { y } ) ) = (/) ) )
46 45 exp42
 |-  ( ph -> ( x C_ A -> ( y e. x -> ( ( H ` y ) = w -> ( ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> ( x i^i ( `' R " { y } ) ) = (/) ) ) ) ) )
47 46 imp
 |-  ( ( ph /\ x C_ A ) -> ( y e. x -> ( ( H ` y ) = w -> ( ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> ( x i^i ( `' R " { y } ) ) = (/) ) ) ) )
48 47 com3l
 |-  ( y e. x -> ( ( H ` y ) = w -> ( ( ph /\ x C_ A ) -> ( ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> ( x i^i ( `' R " { y } ) ) = (/) ) ) ) )
49 48 com4t
 |-  ( ( ph /\ x C_ A ) -> ( ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> ( y e. x -> ( ( H ` y ) = w -> ( x i^i ( `' R " { y } ) ) = (/) ) ) ) )
50 49 imp
 |-  ( ( ( ph /\ x C_ A ) /\ ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) -> ( y e. x -> ( ( H ` y ) = w -> ( x i^i ( `' R " { y } ) ) = (/) ) ) )
51 50 reximdvai
 |-  ( ( ( ph /\ x C_ A ) /\ ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) -> ( E. y e. x ( H ` y ) = w -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) )
52 33 51 mpd
 |-  ( ( ( ph /\ x C_ A ) /\ ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) )
53 52 rexlimdvaa
 |-  ( ( ph /\ x C_ A ) -> ( E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) )
54 53 ex
 |-  ( ph -> ( x C_ A -> ( E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) )
55 54 adantrd
 |-  ( ph -> ( ( x C_ A /\ x =/= (/) ) -> ( E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) )
56 55 a2d
 |-  ( ph -> ( ( ( x C_ A /\ x =/= (/) ) -> E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) )
57 28 56 syld
 |-  ( ph -> ( S Fr B -> ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) )
58 57 alrimdv
 |-  ( ph -> ( S Fr B -> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) )
59 dffr3
 |-  ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) )
60 58 59 imbitrrdi
 |-  ( ph -> ( S Fr B -> R Fr A ) )