Description: If the image of a set under a relation-preserving function is well-founded, so is the set. See isofr for a bidirectional statement. A more general version of Lemma I.9.9 of Kunen2 p. 47. (Contributed by Eric Schmidt, 11-Oct-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | relpfr | |- ( H RelPres R , S ( A , B ) -> ( S Fr B -> R Fr A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |- ( H RelPres R , S ( A , B ) -> H RelPres R , S ( A , B ) ) |
|
2 | relpf | |- ( H RelPres R , S ( A , B ) -> H : A --> B ) |
|
3 | ffun | |- ( H : A --> B -> Fun H ) |
|
4 | vex | |- x e. _V |
|
5 | 4 | funimaex | |- ( Fun H -> ( H " x ) e. _V ) |
6 | 2 3 5 | 3syl | |- ( H RelPres R , S ( A , B ) -> ( H " x ) e. _V ) |
7 | 1 6 | relpfrlem | |- ( H RelPres R , S ( A , B ) -> ( S Fr B -> R Fr A ) ) |