Metamath Proof Explorer


Theorem relpfr

Description: If the image of a set under a relation-preserving function is well-founded, so is the set. See isofr for a bidirectional statement. A more general version of Lemma I.9.9 of Kunen2 p. 47. (Contributed by Eric Schmidt, 11-Oct-2025)

Ref Expression
Assertion relpfr
|- ( H RelPres R , S ( A , B ) -> ( S Fr B -> R Fr A ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( H RelPres R , S ( A , B ) -> H RelPres R , S ( A , B ) )
2 relpf
 |-  ( H RelPres R , S ( A , B ) -> H : A --> B )
3 ffun
 |-  ( H : A --> B -> Fun H )
4 vex
 |-  x e. _V
5 4 funimaex
 |-  ( Fun H -> ( H " x ) e. _V )
6 2 3 5 3syl
 |-  ( H RelPres R , S ( A , B ) -> ( H " x ) e. _V )
7 1 6 relpfrlem
 |-  ( H RelPres R , S ( A , B ) -> ( S Fr B -> R Fr A ) )