| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relpfrlem.1 |
Could not format ( ph -> H RelPres R , S ( A , B ) ) : No typesetting found for |- ( ph -> H RelPres R , S ( A , B ) ) with typecode |- |
| 2 |
|
relpfrlem.2 |
|
| 3 |
|
relpf |
Could not format ( H RelPres R , S ( A , B ) -> H : A --> B ) : No typesetting found for |- ( H RelPres R , S ( A , B ) -> H : A --> B ) with typecode |- |
| 4 |
1 3
|
syl |
|
| 5 |
|
ffn |
|
| 6 |
|
n0 |
|
| 7 |
|
fnfvima |
|
| 8 |
7
|
ne0d |
|
| 9 |
8
|
3expia |
|
| 10 |
9
|
exlimdv |
|
| 11 |
6 10
|
biimtrid |
|
| 12 |
11
|
expimpd |
|
| 13 |
5 12
|
syl |
|
| 14 |
|
fimass |
|
| 15 |
13 14
|
jctild |
|
| 16 |
4 15
|
syl |
|
| 17 |
|
dffr3 |
|
| 18 |
|
sseq1 |
|
| 19 |
|
neeq1 |
|
| 20 |
18 19
|
anbi12d |
|
| 21 |
|
ineq1 |
|
| 22 |
21
|
eqeq1d |
|
| 23 |
22
|
rexeqbi1dv |
|
| 24 |
20 23
|
imbi12d |
|
| 25 |
24
|
spcgv |
|
| 26 |
2 25
|
syl |
|
| 27 |
17 26
|
biimtrid |
|
| 28 |
16 27
|
syl5d |
|
| 29 |
4
|
adantr |
|
| 30 |
29
|
ffund |
|
| 31 |
|
simpl |
|
| 32 |
|
fvelima |
|
| 33 |
30 31 32
|
syl2an |
|
| 34 |
|
sneq |
|
| 35 |
34
|
eqcoms |
|
| 36 |
35
|
imaeq2d |
|
| 37 |
36
|
ineq2d |
|
| 38 |
37
|
eqeq1d |
|
| 39 |
38
|
biimpd |
|
| 40 |
|
ssel |
|
| 41 |
40
|
imdistani |
|
| 42 |
|
relpmin |
Could not format ( ( H RelPres R , S ( A , B ) /\ ( x C_ A /\ y e. A ) ) -> ( ( ( H " x ) i^i ( `' S " { ( H ` y ) } ) ) = (/) -> ( x i^i ( `' R " { y } ) ) = (/) ) ) : No typesetting found for |- ( ( H RelPres R , S ( A , B ) /\ ( x C_ A /\ y e. A ) ) -> ( ( ( H " x ) i^i ( `' S " { ( H ` y ) } ) ) = (/) -> ( x i^i ( `' R " { y } ) ) = (/) ) ) with typecode |- |
| 43 |
1 41 42
|
syl2an |
|
| 44 |
39 43
|
sylan9r |
|
| 45 |
44
|
adantld |
|
| 46 |
45
|
exp42 |
|
| 47 |
46
|
imp |
|
| 48 |
47
|
com3l |
|
| 49 |
48
|
com4t |
|
| 50 |
49
|
imp |
|
| 51 |
50
|
reximdvai |
|
| 52 |
33 51
|
mpd |
|
| 53 |
52
|
rexlimdvaa |
|
| 54 |
53
|
ex |
|
| 55 |
54
|
adantrd |
|
| 56 |
55
|
a2d |
|
| 57 |
28 56
|
syld |
|
| 58 |
57
|
alrimdv |
|
| 59 |
|
dffr3 |
|
| 60 |
58 59
|
imbitrrdi |
|