Metamath Proof Explorer


Theorem relpfrlem

Description: Lemma for relpfr . Proved without using the Axiom of Replacement. This is isofrlem with weaker hypotheses. (Contributed by Eric Schmidt, 11-Oct-2025)

Ref Expression
Hypotheses relpfrlem.1 No typesetting found for |- ( ph -> H RelPres R , S ( A , B ) ) with typecode |-
relpfrlem.2 φ H x V
Assertion relpfrlem φ S Fr B R Fr A

Proof

Step Hyp Ref Expression
1 relpfrlem.1 Could not format ( ph -> H RelPres R , S ( A , B ) ) : No typesetting found for |- ( ph -> H RelPres R , S ( A , B ) ) with typecode |-
2 relpfrlem.2 φ H x V
3 relpf Could not format ( H RelPres R , S ( A , B ) -> H : A --> B ) : No typesetting found for |- ( H RelPres R , S ( A , B ) -> H : A --> B ) with typecode |-
4 1 3 syl φ H : A B
5 ffn H : A B H Fn A
6 n0 x y y x
7 fnfvima H Fn A x A y x H y H x
8 7 ne0d H Fn A x A y x H x
9 8 3expia H Fn A x A y x H x
10 9 exlimdv H Fn A x A y y x H x
11 6 10 biimtrid H Fn A x A x H x
12 11 expimpd H Fn A x A x H x
13 5 12 syl H : A B x A x H x
14 fimass H : A B H x B
15 13 14 jctild H : A B x A x H x B H x
16 4 15 syl φ x A x H x B H x
17 dffr3 S Fr B z z B z w z z S -1 w =
18 sseq1 z = H x z B H x B
19 neeq1 z = H x z H x
20 18 19 anbi12d z = H x z B z H x B H x
21 ineq1 z = H x z S -1 w = H x S -1 w
22 21 eqeq1d z = H x z S -1 w = H x S -1 w =
23 22 rexeqbi1dv z = H x w z z S -1 w = w H x H x S -1 w =
24 20 23 imbi12d z = H x z B z w z z S -1 w = H x B H x w H x H x S -1 w =
25 24 spcgv H x V z z B z w z z S -1 w = H x B H x w H x H x S -1 w =
26 2 25 syl φ z z B z w z z S -1 w = H x B H x w H x H x S -1 w =
27 17 26 biimtrid φ S Fr B H x B H x w H x H x S -1 w =
28 16 27 syl5d φ S Fr B x A x w H x H x S -1 w =
29 4 adantr φ x A H : A B
30 29 ffund φ x A Fun H
31 simpl w H x H x S -1 w = w H x
32 fvelima Fun H w H x y x H y = w
33 30 31 32 syl2an φ x A w H x H x S -1 w = y x H y = w
34 sneq w = H y w = H y
35 34 eqcoms H y = w w = H y
36 35 imaeq2d H y = w S -1 w = S -1 H y
37 36 ineq2d H y = w H x S -1 w = H x S -1 H y
38 37 eqeq1d H y = w H x S -1 w = H x S -1 H y =
39 38 biimpd H y = w H x S -1 w = H x S -1 H y =
40 ssel x A y x y A
41 40 imdistani x A y x x A y A
42 relpmin Could not format ( ( H RelPres R , S ( A , B ) /\ ( x C_ A /\ y e. A ) ) -> ( ( ( H " x ) i^i ( `' S " { ( H ` y ) } ) ) = (/) -> ( x i^i ( `' R " { y } ) ) = (/) ) ) : No typesetting found for |- ( ( H RelPres R , S ( A , B ) /\ ( x C_ A /\ y e. A ) ) -> ( ( ( H " x ) i^i ( `' S " { ( H ` y ) } ) ) = (/) -> ( x i^i ( `' R " { y } ) ) = (/) ) ) with typecode |-
43 1 41 42 syl2an φ x A y x H x S -1 H y = x R -1 y =
44 39 43 sylan9r φ x A y x H y = w H x S -1 w = x R -1 y =
45 44 adantld φ x A y x H y = w w H x H x S -1 w = x R -1 y =
46 45 exp42 φ x A y x H y = w w H x H x S -1 w = x R -1 y =
47 46 imp φ x A y x H y = w w H x H x S -1 w = x R -1 y =
48 47 com3l y x H y = w φ x A w H x H x S -1 w = x R -1 y =
49 48 com4t φ x A w H x H x S -1 w = y x H y = w x R -1 y =
50 49 imp φ x A w H x H x S -1 w = y x H y = w x R -1 y =
51 50 reximdvai φ x A w H x H x S -1 w = y x H y = w y x x R -1 y =
52 33 51 mpd φ x A w H x H x S -1 w = y x x R -1 y =
53 52 rexlimdvaa φ x A w H x H x S -1 w = y x x R -1 y =
54 53 ex φ x A w H x H x S -1 w = y x x R -1 y =
55 54 adantrd φ x A x w H x H x S -1 w = y x x R -1 y =
56 55 a2d φ x A x w H x H x S -1 w = x A x y x x R -1 y =
57 28 56 syld φ S Fr B x A x y x x R -1 y =
58 57 alrimdv φ S Fr B x x A x y x x R -1 y =
59 dffr3 R Fr A x x A x y x x R -1 y =
60 58 59 imbitrrdi φ S Fr B R Fr A