Description: Negative zero is a left additive identity. (Contributed by Steven Nguyen, 7-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reneg0addlid | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 −ℝ 0 ) + 𝐴 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elre0re | ⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) | |
| 2 | rernegcl | ⊢ ( 0 ∈ ℝ → ( 0 −ℝ 0 ) ∈ ℝ ) | |
| 3 | elre0re | ⊢ ( 0 ∈ ℝ → 0 ∈ ℝ ) | |
| 4 | renegid | ⊢ ( 0 ∈ ℝ → ( 0 + ( 0 −ℝ 0 ) ) = 0 ) | |
| 5 | 2 3 4 | readdridaddlidd | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 −ℝ 0 ) + 𝐴 ) = 𝐴 ) |
| 6 | 1 5 | mpancom | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 −ℝ 0 ) + 𝐴 ) = 𝐴 ) |