Step |
Hyp |
Ref |
Expression |
1 |
|
elre0re |
⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) |
2 |
1
|
recnd |
⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℂ ) |
3 |
1 1
|
readdcld |
⊢ ( 𝐴 ∈ ℝ → ( 0 + 0 ) ∈ ℝ ) |
4 |
|
rernegcl |
⊢ ( ( 0 + 0 ) ∈ ℝ → ( 0 −ℝ ( 0 + 0 ) ) ∈ ℝ ) |
5 |
3 4
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( 0 −ℝ ( 0 + 0 ) ) ∈ ℝ ) |
6 |
5
|
recnd |
⊢ ( 𝐴 ∈ ℝ → ( 0 −ℝ ( 0 + 0 ) ) ∈ ℂ ) |
7 |
2 2 6
|
addassd |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 + 0 ) + ( 0 −ℝ ( 0 + 0 ) ) ) = ( 0 + ( 0 + ( 0 −ℝ ( 0 + 0 ) ) ) ) ) |
8 |
|
renegid |
⊢ ( ( 0 + 0 ) ∈ ℝ → ( ( 0 + 0 ) + ( 0 −ℝ ( 0 + 0 ) ) ) = 0 ) |
9 |
3 8
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 + 0 ) + ( 0 −ℝ ( 0 + 0 ) ) ) = 0 ) |
10 |
7 9
|
eqtr3d |
⊢ ( 𝐴 ∈ ℝ → ( 0 + ( 0 + ( 0 −ℝ ( 0 + 0 ) ) ) ) = 0 ) |
11 |
1 5
|
readdcld |
⊢ ( 𝐴 ∈ ℝ → ( 0 + ( 0 −ℝ ( 0 + 0 ) ) ) ∈ ℝ ) |
12 |
|
renegadd |
⊢ ( ( 0 ∈ ℝ ∧ ( 0 + ( 0 −ℝ ( 0 + 0 ) ) ) ∈ ℝ ) → ( ( 0 −ℝ 0 ) = ( 0 + ( 0 −ℝ ( 0 + 0 ) ) ) ↔ ( 0 + ( 0 + ( 0 −ℝ ( 0 + 0 ) ) ) ) = 0 ) ) |
13 |
1 11 12
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 −ℝ 0 ) = ( 0 + ( 0 −ℝ ( 0 + 0 ) ) ) ↔ ( 0 + ( 0 + ( 0 −ℝ ( 0 + 0 ) ) ) ) = 0 ) ) |
14 |
10 13
|
mpbird |
⊢ ( 𝐴 ∈ ℝ → ( 0 −ℝ 0 ) = ( 0 + ( 0 −ℝ ( 0 + 0 ) ) ) ) |
15 |
14
|
eqcomd |
⊢ ( 𝐴 ∈ ℝ → ( 0 + ( 0 −ℝ ( 0 + 0 ) ) ) = ( 0 −ℝ 0 ) ) |