Metamath Proof Explorer


Theorem resubeulem1

Description: Lemma for resubeu . A value which when added to zero, results in negative zero. (Contributed by Steven Nguyen, 7-Jan-2023)

Ref Expression
Assertion resubeulem1 A 0 + 0 - 0 + 0 = 0 - 0

Proof

Step Hyp Ref Expression
1 elre0re A 0
2 1 recnd A 0
3 1 1 readdcld A 0 + 0
4 rernegcl 0 + 0 0 - 0 + 0
5 3 4 syl A 0 - 0 + 0
6 5 recnd A 0 - 0 + 0
7 2 2 6 addassd A 0 + 0 + 0 - 0 + 0 = 0 + 0 + 0 - 0 + 0
8 renegid 0 + 0 0 + 0 + 0 - 0 + 0 = 0
9 3 8 syl A 0 + 0 + 0 - 0 + 0 = 0
10 7 9 eqtr3d A 0 + 0 + 0 - 0 + 0 = 0
11 1 5 readdcld A 0 + 0 - 0 + 0
12 renegadd 0 0 + 0 - 0 + 0 0 - 0 = 0 + 0 - 0 + 0 0 + 0 + 0 - 0 + 0 = 0
13 1 11 12 syl2anc A 0 - 0 = 0 + 0 - 0 + 0 0 + 0 + 0 - 0 + 0 = 0
14 10 13 mpbird A 0 - 0 = 0 + 0 - 0 + 0
15 14 eqcomd A 0 + 0 - 0 + 0 = 0 - 0