Metamath Proof Explorer


Theorem resubeulem2

Description: Lemma for resubeu . A value which when added to A , results in B . (Contributed by Steven Nguyen, 7-Jan-2023)

Ref Expression
Assertion resubeulem2 A B A + 0 - A + 0 - 0 + 0 + B = B

Proof

Step Hyp Ref Expression
1 renegid A A + 0 - A = 0
2 1 adantr A B A + 0 - A = 0
3 2 oveq1d A B A + 0 - A + 0 - 0 + 0 + B = 0 + 0 - 0 + 0 + B
4 simpl A B A
5 4 recnd A B A
6 rernegcl A 0 - A
7 6 adantr A B 0 - A
8 7 recnd A B 0 - A
9 elre0re B 0
10 9 9 readdcld B 0 + 0
11 rernegcl 0 + 0 0 - 0 + 0
12 10 11 syl B 0 - 0 + 0
13 id B B
14 12 13 readdcld B 0 - 0 + 0 + B
15 14 adantl A B 0 - 0 + 0 + B
16 15 recnd A B 0 - 0 + 0 + B
17 5 8 16 addassd A B A + 0 - A + 0 - 0 + 0 + B = A + 0 - A + 0 - 0 + 0 + B
18 resubeulem1 B 0 + 0 - 0 + 0 = 0 - 0
19 18 oveq1d B 0 + 0 - 0 + 0 + B = 0 - 0 + B
20 9 recnd B 0
21 12 recnd B 0 - 0 + 0
22 recn B B
23 20 21 22 addassd B 0 + 0 - 0 + 0 + B = 0 + 0 - 0 + 0 + B
24 reneg0addid2 B 0 - 0 + B = B
25 19 23 24 3eqtr3d B 0 + 0 - 0 + 0 + B = B
26 25 adantl A B 0 + 0 - 0 + 0 + B = B
27 3 17 26 3eqtr3d A B A + 0 - A + 0 - 0 + 0 + B = B