Step |
Hyp |
Ref |
Expression |
1 |
|
renegid |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + ( 0 −ℝ 𝐴 ) ) = 0 ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + ( 0 −ℝ 𝐴 ) ) = 0 ) |
3 |
2
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + ( 0 −ℝ 𝐴 ) ) + ( ( 0 −ℝ ( 0 + 0 ) ) + 𝐵 ) ) = ( 0 + ( ( 0 −ℝ ( 0 + 0 ) ) + 𝐵 ) ) ) |
4 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
5 |
4
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
6 |
|
rernegcl |
⊢ ( 𝐴 ∈ ℝ → ( 0 −ℝ 𝐴 ) ∈ ℝ ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 −ℝ 𝐴 ) ∈ ℝ ) |
8 |
7
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 −ℝ 𝐴 ) ∈ ℂ ) |
9 |
|
elre0re |
⊢ ( 𝐵 ∈ ℝ → 0 ∈ ℝ ) |
10 |
9 9
|
readdcld |
⊢ ( 𝐵 ∈ ℝ → ( 0 + 0 ) ∈ ℝ ) |
11 |
|
rernegcl |
⊢ ( ( 0 + 0 ) ∈ ℝ → ( 0 −ℝ ( 0 + 0 ) ) ∈ ℝ ) |
12 |
10 11
|
syl |
⊢ ( 𝐵 ∈ ℝ → ( 0 −ℝ ( 0 + 0 ) ) ∈ ℝ ) |
13 |
|
id |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ ) |
14 |
12 13
|
readdcld |
⊢ ( 𝐵 ∈ ℝ → ( ( 0 −ℝ ( 0 + 0 ) ) + 𝐵 ) ∈ ℝ ) |
15 |
14
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 −ℝ ( 0 + 0 ) ) + 𝐵 ) ∈ ℝ ) |
16 |
15
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 −ℝ ( 0 + 0 ) ) + 𝐵 ) ∈ ℂ ) |
17 |
5 8 16
|
addassd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + ( 0 −ℝ 𝐴 ) ) + ( ( 0 −ℝ ( 0 + 0 ) ) + 𝐵 ) ) = ( 𝐴 + ( ( 0 −ℝ 𝐴 ) + ( ( 0 −ℝ ( 0 + 0 ) ) + 𝐵 ) ) ) ) |
18 |
|
resubeulem1 |
⊢ ( 𝐵 ∈ ℝ → ( 0 + ( 0 −ℝ ( 0 + 0 ) ) ) = ( 0 −ℝ 0 ) ) |
19 |
18
|
oveq1d |
⊢ ( 𝐵 ∈ ℝ → ( ( 0 + ( 0 −ℝ ( 0 + 0 ) ) ) + 𝐵 ) = ( ( 0 −ℝ 0 ) + 𝐵 ) ) |
20 |
9
|
recnd |
⊢ ( 𝐵 ∈ ℝ → 0 ∈ ℂ ) |
21 |
12
|
recnd |
⊢ ( 𝐵 ∈ ℝ → ( 0 −ℝ ( 0 + 0 ) ) ∈ ℂ ) |
22 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
23 |
20 21 22
|
addassd |
⊢ ( 𝐵 ∈ ℝ → ( ( 0 + ( 0 −ℝ ( 0 + 0 ) ) ) + 𝐵 ) = ( 0 + ( ( 0 −ℝ ( 0 + 0 ) ) + 𝐵 ) ) ) |
24 |
|
reneg0addlid |
⊢ ( 𝐵 ∈ ℝ → ( ( 0 −ℝ 0 ) + 𝐵 ) = 𝐵 ) |
25 |
19 23 24
|
3eqtr3d |
⊢ ( 𝐵 ∈ ℝ → ( 0 + ( ( 0 −ℝ ( 0 + 0 ) ) + 𝐵 ) ) = 𝐵 ) |
26 |
25
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 + ( ( 0 −ℝ ( 0 + 0 ) ) + 𝐵 ) ) = 𝐵 ) |
27 |
3 17 26
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + ( ( 0 −ℝ 𝐴 ) + ( ( 0 −ℝ ( 0 + 0 ) ) + 𝐵 ) ) ) = 𝐵 ) |