Step |
Hyp |
Ref |
Expression |
1 |
|
renegid |
|- ( A e. RR -> ( A + ( 0 -R A ) ) = 0 ) |
2 |
1
|
adantr |
|- ( ( A e. RR /\ B e. RR ) -> ( A + ( 0 -R A ) ) = 0 ) |
3 |
2
|
oveq1d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + ( 0 -R A ) ) + ( ( 0 -R ( 0 + 0 ) ) + B ) ) = ( 0 + ( ( 0 -R ( 0 + 0 ) ) + B ) ) ) |
4 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
5 |
4
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> A e. CC ) |
6 |
|
rernegcl |
|- ( A e. RR -> ( 0 -R A ) e. RR ) |
7 |
6
|
adantr |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 -R A ) e. RR ) |
8 |
7
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 -R A ) e. CC ) |
9 |
|
elre0re |
|- ( B e. RR -> 0 e. RR ) |
10 |
9 9
|
readdcld |
|- ( B e. RR -> ( 0 + 0 ) e. RR ) |
11 |
|
rernegcl |
|- ( ( 0 + 0 ) e. RR -> ( 0 -R ( 0 + 0 ) ) e. RR ) |
12 |
10 11
|
syl |
|- ( B e. RR -> ( 0 -R ( 0 + 0 ) ) e. RR ) |
13 |
|
id |
|- ( B e. RR -> B e. RR ) |
14 |
12 13
|
readdcld |
|- ( B e. RR -> ( ( 0 -R ( 0 + 0 ) ) + B ) e. RR ) |
15 |
14
|
adantl |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 -R ( 0 + 0 ) ) + B ) e. RR ) |
16 |
15
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 -R ( 0 + 0 ) ) + B ) e. CC ) |
17 |
5 8 16
|
addassd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + ( 0 -R A ) ) + ( ( 0 -R ( 0 + 0 ) ) + B ) ) = ( A + ( ( 0 -R A ) + ( ( 0 -R ( 0 + 0 ) ) + B ) ) ) ) |
18 |
|
resubeulem1 |
|- ( B e. RR -> ( 0 + ( 0 -R ( 0 + 0 ) ) ) = ( 0 -R 0 ) ) |
19 |
18
|
oveq1d |
|- ( B e. RR -> ( ( 0 + ( 0 -R ( 0 + 0 ) ) ) + B ) = ( ( 0 -R 0 ) + B ) ) |
20 |
9
|
recnd |
|- ( B e. RR -> 0 e. CC ) |
21 |
12
|
recnd |
|- ( B e. RR -> ( 0 -R ( 0 + 0 ) ) e. CC ) |
22 |
|
recn |
|- ( B e. RR -> B e. CC ) |
23 |
20 21 22
|
addassd |
|- ( B e. RR -> ( ( 0 + ( 0 -R ( 0 + 0 ) ) ) + B ) = ( 0 + ( ( 0 -R ( 0 + 0 ) ) + B ) ) ) |
24 |
|
reneg0addid2 |
|- ( B e. RR -> ( ( 0 -R 0 ) + B ) = B ) |
25 |
19 23 24
|
3eqtr3d |
|- ( B e. RR -> ( 0 + ( ( 0 -R ( 0 + 0 ) ) + B ) ) = B ) |
26 |
25
|
adantl |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 + ( ( 0 -R ( 0 + 0 ) ) + B ) ) = B ) |
27 |
3 17 26
|
3eqtr3d |
|- ( ( A e. RR /\ B e. RR ) -> ( A + ( ( 0 -R A ) + ( ( 0 -R ( 0 + 0 ) ) + B ) ) ) = B ) |