| Step |
Hyp |
Ref |
Expression |
| 1 |
|
renegid |
|- ( A e. RR -> ( A + ( 0 -R A ) ) = 0 ) |
| 2 |
1
|
adantr |
|- ( ( A e. RR /\ B e. RR ) -> ( A + ( 0 -R A ) ) = 0 ) |
| 3 |
2
|
oveq1d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + ( 0 -R A ) ) + ( ( 0 -R ( 0 + 0 ) ) + B ) ) = ( 0 + ( ( 0 -R ( 0 + 0 ) ) + B ) ) ) |
| 4 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
| 5 |
4
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> A e. CC ) |
| 6 |
|
rernegcl |
|- ( A e. RR -> ( 0 -R A ) e. RR ) |
| 7 |
6
|
adantr |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 -R A ) e. RR ) |
| 8 |
7
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 -R A ) e. CC ) |
| 9 |
|
elre0re |
|- ( B e. RR -> 0 e. RR ) |
| 10 |
9 9
|
readdcld |
|- ( B e. RR -> ( 0 + 0 ) e. RR ) |
| 11 |
|
rernegcl |
|- ( ( 0 + 0 ) e. RR -> ( 0 -R ( 0 + 0 ) ) e. RR ) |
| 12 |
10 11
|
syl |
|- ( B e. RR -> ( 0 -R ( 0 + 0 ) ) e. RR ) |
| 13 |
|
id |
|- ( B e. RR -> B e. RR ) |
| 14 |
12 13
|
readdcld |
|- ( B e. RR -> ( ( 0 -R ( 0 + 0 ) ) + B ) e. RR ) |
| 15 |
14
|
adantl |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 -R ( 0 + 0 ) ) + B ) e. RR ) |
| 16 |
15
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 -R ( 0 + 0 ) ) + B ) e. CC ) |
| 17 |
5 8 16
|
addassd |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + ( 0 -R A ) ) + ( ( 0 -R ( 0 + 0 ) ) + B ) ) = ( A + ( ( 0 -R A ) + ( ( 0 -R ( 0 + 0 ) ) + B ) ) ) ) |
| 18 |
|
resubeulem1 |
|- ( B e. RR -> ( 0 + ( 0 -R ( 0 + 0 ) ) ) = ( 0 -R 0 ) ) |
| 19 |
18
|
oveq1d |
|- ( B e. RR -> ( ( 0 + ( 0 -R ( 0 + 0 ) ) ) + B ) = ( ( 0 -R 0 ) + B ) ) |
| 20 |
9
|
recnd |
|- ( B e. RR -> 0 e. CC ) |
| 21 |
12
|
recnd |
|- ( B e. RR -> ( 0 -R ( 0 + 0 ) ) e. CC ) |
| 22 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 23 |
20 21 22
|
addassd |
|- ( B e. RR -> ( ( 0 + ( 0 -R ( 0 + 0 ) ) ) + B ) = ( 0 + ( ( 0 -R ( 0 + 0 ) ) + B ) ) ) |
| 24 |
|
reneg0addlid |
|- ( B e. RR -> ( ( 0 -R 0 ) + B ) = B ) |
| 25 |
19 23 24
|
3eqtr3d |
|- ( B e. RR -> ( 0 + ( ( 0 -R ( 0 + 0 ) ) + B ) ) = B ) |
| 26 |
25
|
adantl |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 + ( ( 0 -R ( 0 + 0 ) ) + B ) ) = B ) |
| 27 |
3 17 26
|
3eqtr3d |
|- ( ( A e. RR /\ B e. RR ) -> ( A + ( ( 0 -R A ) + ( ( 0 -R ( 0 + 0 ) ) + B ) ) ) = B ) |