Description: Negative zero is a left additive identity. (Contributed by Steven Nguyen, 7-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reneg0addlid | |- ( A e. RR -> ( ( 0 -R 0 ) + A ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elre0re | |- ( A e. RR -> 0 e. RR ) |
|
| 2 | rernegcl | |- ( 0 e. RR -> ( 0 -R 0 ) e. RR ) |
|
| 3 | elre0re | |- ( 0 e. RR -> 0 e. RR ) |
|
| 4 | renegid | |- ( 0 e. RR -> ( 0 + ( 0 -R 0 ) ) = 0 ) |
|
| 5 | 2 3 4 | readdridaddlidd | |- ( ( 0 e. RR /\ A e. RR ) -> ( ( 0 -R 0 ) + A ) = A ) |
| 6 | 1 5 | mpancom | |- ( A e. RR -> ( ( 0 -R 0 ) + A ) = A ) |