Metamath Proof Explorer


Theorem resseqnbas

Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014) (Revised by Mario Carneiro, 2-Dec-2014) (Revised by AV, 19-Oct-2024)

Ref Expression
Hypotheses resseqnbas.r 𝑅 = ( 𝑊s 𝐴 )
resseqnbas.e 𝐶 = ( 𝐸𝑊 )
resseqnbas.f 𝐸 = Slot ( 𝐸 ‘ ndx )
resseqnbas.n ( 𝐸 ‘ ndx ) ≠ ( Base ‘ ndx )
Assertion resseqnbas ( 𝐴𝑉𝐶 = ( 𝐸𝑅 ) )

Proof

Step Hyp Ref Expression
1 resseqnbas.r 𝑅 = ( 𝑊s 𝐴 )
2 resseqnbas.e 𝐶 = ( 𝐸𝑊 )
3 resseqnbas.f 𝐸 = Slot ( 𝐸 ‘ ndx )
4 resseqnbas.n ( 𝐸 ‘ ndx ) ≠ ( Base ‘ ndx )
5 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
6 1 5 ressid2 ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉 ) → 𝑅 = 𝑊 )
7 6 fveq2d ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐸𝑅 ) = ( 𝐸𝑊 ) )
8 7 3expib ( ( Base ‘ 𝑊 ) ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐸𝑅 ) = ( 𝐸𝑊 ) ) )
9 1 5 ressval2 ( ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉 ) → 𝑅 = ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⟩ ) )
10 9 fveq2d ( ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐸𝑅 ) = ( 𝐸 ‘ ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⟩ ) ) )
11 3 4 setsnid ( 𝐸𝑊 ) = ( 𝐸 ‘ ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⟩ ) )
12 10 11 eqtr4di ( ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐸𝑅 ) = ( 𝐸𝑊 ) )
13 12 3expib ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐸𝑅 ) = ( 𝐸𝑊 ) ) )
14 8 13 pm2.61i ( ( 𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐸𝑅 ) = ( 𝐸𝑊 ) )
15 reldmress Rel dom ↾s
16 15 ovprc1 ( ¬ 𝑊 ∈ V → ( 𝑊s 𝐴 ) = ∅ )
17 1 16 syl5eq ( ¬ 𝑊 ∈ V → 𝑅 = ∅ )
18 17 fveq2d ( ¬ 𝑊 ∈ V → ( 𝐸𝑅 ) = ( 𝐸 ‘ ∅ ) )
19 3 str0 ∅ = ( 𝐸 ‘ ∅ )
20 18 19 eqtr4di ( ¬ 𝑊 ∈ V → ( 𝐸𝑅 ) = ∅ )
21 fvprc ( ¬ 𝑊 ∈ V → ( 𝐸𝑊 ) = ∅ )
22 20 21 eqtr4d ( ¬ 𝑊 ∈ V → ( 𝐸𝑅 ) = ( 𝐸𝑊 ) )
23 22 adantr ( ( ¬ 𝑊 ∈ V ∧ 𝐴𝑉 ) → ( 𝐸𝑅 ) = ( 𝐸𝑊 ) )
24 14 23 pm2.61ian ( 𝐴𝑉 → ( 𝐸𝑅 ) = ( 𝐸𝑊 ) )
25 2 24 eqtr4id ( 𝐴𝑉𝐶 = ( 𝐸𝑅 ) )