| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							resseqnbas.r | 
							⊢ 𝑅  =  ( 𝑊  ↾s  𝐴 )  | 
						
						
							| 2 | 
							
								
							 | 
							resseqnbas.e | 
							⊢ 𝐶  =  ( 𝐸 ‘ 𝑊 )  | 
						
						
							| 3 | 
							
								
							 | 
							resseqnbas.f | 
							⊢ 𝐸  =  Slot  ( 𝐸 ‘ ndx )  | 
						
						
							| 4 | 
							
								
							 | 
							resseqnbas.n | 
							⊢ ( 𝐸 ‘ ndx )  ≠  ( Base ‘ ndx )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							ressid2 | 
							⊢ ( ( ( Base ‘ 𝑊 )  ⊆  𝐴  ∧  𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  𝑅  =  𝑊 )  | 
						
						
							| 7 | 
							
								6
							 | 
							fveq2d | 
							⊢ ( ( ( Base ‘ 𝑊 )  ⊆  𝐴  ∧  𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( 𝐸 ‘ 𝑅 )  =  ( 𝐸 ‘ 𝑊 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							3expib | 
							⊢ ( ( Base ‘ 𝑊 )  ⊆  𝐴  →  ( ( 𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( 𝐸 ‘ 𝑅 )  =  ( 𝐸 ‘ 𝑊 ) ) )  | 
						
						
							| 9 | 
							
								1 5
							 | 
							ressval2 | 
							⊢ ( ( ¬  ( Base ‘ 𝑊 )  ⊆  𝐴  ∧  𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  𝑅  =  ( 𝑊  sSet  〈 ( Base ‘ ndx ) ,  ( 𝐴  ∩  ( Base ‘ 𝑊 ) ) 〉 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							fveq2d | 
							⊢ ( ( ¬  ( Base ‘ 𝑊 )  ⊆  𝐴  ∧  𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( 𝐸 ‘ 𝑅 )  =  ( 𝐸 ‘ ( 𝑊  sSet  〈 ( Base ‘ ndx ) ,  ( 𝐴  ∩  ( Base ‘ 𝑊 ) ) 〉 ) ) )  | 
						
						
							| 11 | 
							
								3 4
							 | 
							setsnid | 
							⊢ ( 𝐸 ‘ 𝑊 )  =  ( 𝐸 ‘ ( 𝑊  sSet  〈 ( Base ‘ ndx ) ,  ( 𝐴  ∩  ( Base ‘ 𝑊 ) ) 〉 ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							eqtr4di | 
							⊢ ( ( ¬  ( Base ‘ 𝑊 )  ⊆  𝐴  ∧  𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( 𝐸 ‘ 𝑅 )  =  ( 𝐸 ‘ 𝑊 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							3expib | 
							⊢ ( ¬  ( Base ‘ 𝑊 )  ⊆  𝐴  →  ( ( 𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( 𝐸 ‘ 𝑅 )  =  ( 𝐸 ‘ 𝑊 ) ) )  | 
						
						
							| 14 | 
							
								8 13
							 | 
							pm2.61i | 
							⊢ ( ( 𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( 𝐸 ‘ 𝑅 )  =  ( 𝐸 ‘ 𝑊 ) )  | 
						
						
							| 15 | 
							
								3
							 | 
							str0 | 
							⊢ ∅  =  ( 𝐸 ‘ ∅ )  | 
						
						
							| 16 | 
							
								15
							 | 
							eqcomi | 
							⊢ ( 𝐸 ‘ ∅ )  =  ∅  | 
						
						
							| 17 | 
							
								
							 | 
							reldmress | 
							⊢ Rel  dom   ↾s   | 
						
						
							| 18 | 
							
								16 1 17
							 | 
							oveqprc | 
							⊢ ( ¬  𝑊  ∈  V  →  ( 𝐸 ‘ 𝑊 )  =  ( 𝐸 ‘ 𝑅 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							eqcomd | 
							⊢ ( ¬  𝑊  ∈  V  →  ( 𝐸 ‘ 𝑅 )  =  ( 𝐸 ‘ 𝑊 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							adantr | 
							⊢ ( ( ¬  𝑊  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( 𝐸 ‘ 𝑅 )  =  ( 𝐸 ‘ 𝑊 ) )  | 
						
						
							| 21 | 
							
								14 20
							 | 
							pm2.61ian | 
							⊢ ( 𝐴  ∈  𝑉  →  ( 𝐸 ‘ 𝑅 )  =  ( 𝐸 ‘ 𝑊 ) )  | 
						
						
							| 22 | 
							
								2 21
							 | 
							eqtr4id | 
							⊢ ( 𝐴  ∈  𝑉  →  𝐶  =  ( 𝐸 ‘ 𝑅 ) )  |