Description: Any real number subtracted from itself forms a left additive identity. (Contributed by Steven Nguyen, 8-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resubidaddlid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 −ℝ 𝐴 ) + 𝐵 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | readdsub | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) −ℝ 𝐴 ) = ( ( 𝐴 −ℝ 𝐴 ) + 𝐵 ) ) | |
| 2 | 1 | 3anidm13 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) −ℝ 𝐴 ) = ( ( 𝐴 −ℝ 𝐴 ) + 𝐵 ) ) |
| 3 | repncan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) −ℝ 𝐴 ) = 𝐵 ) | |
| 4 | 2 3 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 −ℝ 𝐴 ) + 𝐵 ) = 𝐵 ) |