Metamath Proof Explorer


Theorem resup

Description: The real numbers are unbounded above. (Contributed by Mario Carneiro, 7-May-2016)

Ref Expression
Assertion resup sup ( ℝ , ℝ* , < ) = +∞

Proof

Step Hyp Ref Expression
1 ioomax ( -∞ (,) +∞ ) = ℝ
2 1 supeq1i sup ( ( -∞ (,) +∞ ) , ℝ* , < ) = sup ( ℝ , ℝ* , < )
3 mnfxr -∞ ∈ ℝ*
4 mnfnepnf -∞ ≠ +∞
5 ioopnfsup ( ( -∞ ∈ ℝ* ∧ -∞ ≠ +∞ ) → sup ( ( -∞ (,) +∞ ) , ℝ* , < ) = +∞ )
6 3 4 5 mp2an sup ( ( -∞ (,) +∞ ) , ℝ* , < ) = +∞
7 2 6 eqtr3i sup ( ℝ , ℝ* , < ) = +∞