Description: The real numbers are unbounded above. (Contributed by Mario Carneiro, 7-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | resup | ⊢ sup ( ℝ , ℝ* , < ) = +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioomax | ⊢ ( -∞ (,) +∞ ) = ℝ | |
2 | 1 | supeq1i | ⊢ sup ( ( -∞ (,) +∞ ) , ℝ* , < ) = sup ( ℝ , ℝ* , < ) |
3 | mnfxr | ⊢ -∞ ∈ ℝ* | |
4 | mnfnepnf | ⊢ -∞ ≠ +∞ | |
5 | ioopnfsup | ⊢ ( ( -∞ ∈ ℝ* ∧ -∞ ≠ +∞ ) → sup ( ( -∞ (,) +∞ ) , ℝ* , < ) = +∞ ) | |
6 | 3 4 5 | mp2an | ⊢ sup ( ( -∞ (,) +∞ ) , ℝ* , < ) = +∞ |
7 | 2 6 | eqtr3i | ⊢ sup ( ℝ , ℝ* , < ) = +∞ |