Metamath Proof Explorer


Theorem resup

Description: The real numbers are unbounded above. (Contributed by Mario Carneiro, 7-May-2016)

Ref Expression
Assertion resup sup*<=+∞

Proof

Step Hyp Ref Expression
1 ioomax −∞+∞=
2 1 supeq1i sup−∞+∞*<=sup*<
3 mnfxr −∞*
4 mnfnepnf −∞+∞
5 ioopnfsup −∞*−∞+∞sup−∞+∞*<=+∞
6 3 4 5 mp2an sup−∞+∞*<=+∞
7 2 6 eqtr3i sup*<=+∞