| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reuf1od.f | ⊢ ( 𝜑  →  𝐹 : 𝐶 –1-1-onto→ 𝐵 ) | 
						
							| 2 |  | reuf1od.x | ⊢ ( ( 𝜑  ∧  𝑥  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 3 |  | f1of | ⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐵  →  𝐹 : 𝐶 ⟶ 𝐵 ) | 
						
							| 4 | 1 3 | syl | ⊢ ( 𝜑  →  𝐹 : 𝐶 ⟶ 𝐵 ) | 
						
							| 5 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐶 )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 ) | 
						
							| 6 |  | f1ofveu | ⊢ ( ( 𝐹 : 𝐶 –1-1-onto→ 𝐵  ∧  𝑥  ∈  𝐵 )  →  ∃! 𝑦  ∈  𝐶 ( 𝐹 ‘ 𝑦 )  =  𝑥 ) | 
						
							| 7 |  | eqcom | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ 𝑦 )  =  𝑥 ) | 
						
							| 8 | 7 | reubii | ⊢ ( ∃! 𝑦  ∈  𝐶 𝑥  =  ( 𝐹 ‘ 𝑦 )  ↔  ∃! 𝑦  ∈  𝐶 ( 𝐹 ‘ 𝑦 )  =  𝑥 ) | 
						
							| 9 | 6 8 | sylibr | ⊢ ( ( 𝐹 : 𝐶 –1-1-onto→ 𝐵  ∧  𝑥  ∈  𝐵 )  →  ∃! 𝑦  ∈  𝐶 𝑥  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 10 | 1 9 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ∃! 𝑦  ∈  𝐶 𝑥  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 11 | 5 10 2 | reuxfr1d | ⊢ ( 𝜑  →  ( ∃! 𝑥  ∈  𝐵 𝜓  ↔  ∃! 𝑦  ∈  𝐶 𝜒 ) ) |