| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reuf1od.f |
⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1-onto→ 𝐵 ) |
| 2 |
|
reuf1od.x |
⊢ ( ( 𝜑 ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) → ( 𝜓 ↔ 𝜒 ) ) |
| 3 |
|
f1of |
⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐵 → 𝐹 : 𝐶 ⟶ 𝐵 ) |
| 4 |
1 3
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐵 ) |
| 5 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
| 6 |
|
f1ofveu |
⊢ ( ( 𝐹 : 𝐶 –1-1-onto→ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐶 ( 𝐹 ‘ 𝑦 ) = 𝑥 ) |
| 7 |
|
eqcom |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑦 ) = 𝑥 ) |
| 8 |
7
|
reubii |
⊢ ( ∃! 𝑦 ∈ 𝐶 𝑥 = ( 𝐹 ‘ 𝑦 ) ↔ ∃! 𝑦 ∈ 𝐶 ( 𝐹 ‘ 𝑦 ) = 𝑥 ) |
| 9 |
6 8
|
sylibr |
⊢ ( ( 𝐹 : 𝐶 –1-1-onto→ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐶 𝑥 = ( 𝐹 ‘ 𝑦 ) ) |
| 10 |
1 9
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐶 𝑥 = ( 𝐹 ‘ 𝑦 ) ) |
| 11 |
5 10 2
|
reuxfr1d |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ∃! 𝑦 ∈ 𝐶 𝜒 ) ) |