| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  =  𝐴  ↔  𝑦  =  𝐴 ) ) | 
						
							| 2 |  | eqeq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  =  𝐵  ↔  𝑦  =  𝐵 ) ) | 
						
							| 3 | 1 2 | orbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 ) ) ) | 
						
							| 4 | 3 | reu8 | ⊢ ( ∃! 𝑥  ∈  𝑉 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  ∃ 𝑥  ∈  𝑉 ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∧  ∀ 𝑦  ∈  𝑉 ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 5 |  | simprlr | ⊢ ( ( 𝑥  =  𝐴  ∧  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 ) )  →  𝐵  ∈  𝑉 ) | 
						
							| 6 |  | eqeq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  =  𝐴  ↔  𝐵  =  𝐴 ) ) | 
						
							| 7 |  | eqeq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  =  𝐵  ↔  𝐵  =  𝐵 ) ) | 
						
							| 8 | 6 7 | orbi12d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  ↔  ( 𝐵  =  𝐴  ∨  𝐵  =  𝐵 ) ) ) | 
						
							| 9 |  | eqeq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑥  =  𝑦  ↔  𝑥  =  𝐵 ) ) | 
						
							| 10 | 8 9 | imbi12d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  →  𝑥  =  𝑦 )  ↔  ( ( 𝐵  =  𝐴  ∨  𝐵  =  𝐵 )  →  𝑥  =  𝐵 ) ) ) | 
						
							| 11 | 10 | rspcv | ⊢ ( 𝐵  ∈  𝑉  →  ( ∀ 𝑦  ∈  𝑉 ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  →  𝑥  =  𝑦 )  →  ( ( 𝐵  =  𝐴  ∨  𝐵  =  𝐵 )  →  𝑥  =  𝐵 ) ) ) | 
						
							| 12 | 5 11 | syl | ⊢ ( ( 𝑥  =  𝐴  ∧  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 ) )  →  ( ∀ 𝑦  ∈  𝑉 ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  →  𝑥  =  𝑦 )  →  ( ( 𝐵  =  𝐴  ∨  𝐵  =  𝐵 )  →  𝑥  =  𝐵 ) ) ) | 
						
							| 13 |  | ioran | ⊢ ( ¬  ( 𝐵  =  𝐴  ∨  𝐵  =  𝐵 )  ↔  ( ¬  𝐵  =  𝐴  ∧  ¬  𝐵  =  𝐵 ) ) | 
						
							| 14 |  | eqid | ⊢ 𝐵  =  𝐵 | 
						
							| 15 | 14 | pm2.24i | ⊢ ( ¬  𝐵  =  𝐵  →  ( ( 𝑥  =  𝐴  ∧  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 ) )  →  𝐴  =  𝐵 ) ) | 
						
							| 16 | 13 15 | simplbiim | ⊢ ( ¬  ( 𝐵  =  𝐴  ∨  𝐵  =  𝐵 )  →  ( ( 𝑥  =  𝐴  ∧  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 ) )  →  𝐴  =  𝐵 ) ) | 
						
							| 17 |  | eqtr2 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑥  =  𝐵 )  →  𝐴  =  𝐵 ) | 
						
							| 18 | 17 | ancoms | ⊢ ( ( 𝑥  =  𝐵  ∧  𝑥  =  𝐴 )  →  𝐴  =  𝐵 ) | 
						
							| 19 | 18 | a1d | ⊢ ( ( 𝑥  =  𝐵  ∧  𝑥  =  𝐴 )  →  ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 )  →  𝐴  =  𝐵 ) ) | 
						
							| 20 | 19 | expimpd | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝑥  =  𝐴  ∧  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 ) )  →  𝐴  =  𝐵 ) ) | 
						
							| 21 | 16 20 | ja | ⊢ ( ( ( 𝐵  =  𝐴  ∨  𝐵  =  𝐵 )  →  𝑥  =  𝐵 )  →  ( ( 𝑥  =  𝐴  ∧  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 ) )  →  𝐴  =  𝐵 ) ) | 
						
							| 22 | 21 | com12 | ⊢ ( ( 𝑥  =  𝐴  ∧  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 ) )  →  ( ( ( 𝐵  =  𝐴  ∨  𝐵  =  𝐵 )  →  𝑥  =  𝐵 )  →  𝐴  =  𝐵 ) ) | 
						
							| 23 | 12 22 | syld | ⊢ ( ( 𝑥  =  𝐴  ∧  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 ) )  →  ( ∀ 𝑦  ∈  𝑉 ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  →  𝑥  =  𝑦 )  →  𝐴  =  𝐵 ) ) | 
						
							| 24 | 23 | ex | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 )  →  ( ∀ 𝑦  ∈  𝑉 ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  →  𝑥  =  𝑦 )  →  𝐴  =  𝐵 ) ) ) | 
						
							| 25 |  | simprll | ⊢ ( ( 𝑥  =  𝐵  ∧  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 26 |  | eqeq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  =  𝐴  ↔  𝐴  =  𝐴 ) ) | 
						
							| 27 |  | eqeq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  =  𝐵  ↔  𝐴  =  𝐵 ) ) | 
						
							| 28 | 26 27 | orbi12d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  ↔  ( 𝐴  =  𝐴  ∨  𝐴  =  𝐵 ) ) ) | 
						
							| 29 |  | eqeq2 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑥  =  𝑦  ↔  𝑥  =  𝐴 ) ) | 
						
							| 30 | 28 29 | imbi12d | ⊢ ( 𝑦  =  𝐴  →  ( ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  →  𝑥  =  𝑦 )  ↔  ( ( 𝐴  =  𝐴  ∨  𝐴  =  𝐵 )  →  𝑥  =  𝐴 ) ) ) | 
						
							| 31 | 30 | rspcv | ⊢ ( 𝐴  ∈  𝑉  →  ( ∀ 𝑦  ∈  𝑉 ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  →  𝑥  =  𝑦 )  →  ( ( 𝐴  =  𝐴  ∨  𝐴  =  𝐵 )  →  𝑥  =  𝐴 ) ) ) | 
						
							| 32 | 25 31 | syl | ⊢ ( ( 𝑥  =  𝐵  ∧  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 ) )  →  ( ∀ 𝑦  ∈  𝑉 ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  →  𝑥  =  𝑦 )  →  ( ( 𝐴  =  𝐴  ∨  𝐴  =  𝐵 )  →  𝑥  =  𝐴 ) ) ) | 
						
							| 33 |  | ioran | ⊢ ( ¬  ( 𝐴  =  𝐴  ∨  𝐴  =  𝐵 )  ↔  ( ¬  𝐴  =  𝐴  ∧  ¬  𝐴  =  𝐵 ) ) | 
						
							| 34 |  | eqid | ⊢ 𝐴  =  𝐴 | 
						
							| 35 | 34 | pm2.24i | ⊢ ( ¬  𝐴  =  𝐴  →  ( ( 𝑥  =  𝐵  ∧  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 ) )  →  𝐴  =  𝐵 ) ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( ¬  𝐴  =  𝐴  ∧  ¬  𝐴  =  𝐵 )  →  ( ( 𝑥  =  𝐵  ∧  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 ) )  →  𝐴  =  𝐵 ) ) | 
						
							| 37 | 33 36 | sylbi | ⊢ ( ¬  ( 𝐴  =  𝐴  ∨  𝐴  =  𝐵 )  →  ( ( 𝑥  =  𝐵  ∧  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 ) )  →  𝐴  =  𝐵 ) ) | 
						
							| 38 | 17 | a1d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑥  =  𝐵 )  →  ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 )  →  𝐴  =  𝐵 ) ) | 
						
							| 39 | 38 | expimpd | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  =  𝐵  ∧  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 ) )  →  𝐴  =  𝐵 ) ) | 
						
							| 40 | 37 39 | ja | ⊢ ( ( ( 𝐴  =  𝐴  ∨  𝐴  =  𝐵 )  →  𝑥  =  𝐴 )  →  ( ( 𝑥  =  𝐵  ∧  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 ) )  →  𝐴  =  𝐵 ) ) | 
						
							| 41 | 40 | com12 | ⊢ ( ( 𝑥  =  𝐵  ∧  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 ) )  →  ( ( ( 𝐴  =  𝐴  ∨  𝐴  =  𝐵 )  →  𝑥  =  𝐴 )  →  𝐴  =  𝐵 ) ) | 
						
							| 42 | 32 41 | syld | ⊢ ( ( 𝑥  =  𝐵  ∧  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 ) )  →  ( ∀ 𝑦  ∈  𝑉 ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  →  𝑥  =  𝑦 )  →  𝐴  =  𝐵 ) ) | 
						
							| 43 | 42 | ex | ⊢ ( 𝑥  =  𝐵  →  ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 )  →  ( ∀ 𝑦  ∈  𝑉 ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  →  𝑥  =  𝑦 )  →  𝐴  =  𝐵 ) ) ) | 
						
							| 44 | 24 43 | jaoi | ⊢ ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 )  →  ( ∀ 𝑦  ∈  𝑉 ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  →  𝑥  =  𝑦 )  →  𝐴  =  𝐵 ) ) ) | 
						
							| 45 | 44 | com12 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 )  →  ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  ( ∀ 𝑦  ∈  𝑉 ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  →  𝑥  =  𝑦 )  →  𝐴  =  𝐵 ) ) ) | 
						
							| 46 | 45 | impd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑥  ∈  𝑉 )  →  ( ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∧  ∀ 𝑦  ∈  𝑉 ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  →  𝑥  =  𝑦 ) )  →  𝐴  =  𝐵 ) ) | 
						
							| 47 | 46 | rexlimdva | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ∃ 𝑥  ∈  𝑉 ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ∧  ∀ 𝑦  ∈  𝑉 ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  →  𝑥  =  𝑦 ) )  →  𝐴  =  𝐵 ) ) | 
						
							| 48 | 4 47 | biimtrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ∃! 𝑥  ∈  𝑉 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  →  𝐴  =  𝐵 ) ) | 
						
							| 49 |  | reueq | ⊢ ( 𝐵  ∈  𝑉  ↔  ∃! 𝑥  ∈  𝑉 𝑥  =  𝐵 ) | 
						
							| 50 | 49 | biimpi | ⊢ ( 𝐵  ∈  𝑉  →  ∃! 𝑥  ∈  𝑉 𝑥  =  𝐵 ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ∃! 𝑥  ∈  𝑉 𝑥  =  𝐵 ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝐴  =  𝐵 )  →  ∃! 𝑥  ∈  𝑉 𝑥  =  𝐵 ) | 
						
							| 53 |  | eqeq2 | ⊢ ( 𝐴  =  𝐵  →  ( 𝑥  =  𝐴  ↔  𝑥  =  𝐵 ) ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝐴  =  𝐵 )  →  ( 𝑥  =  𝐴  ↔  𝑥  =  𝐵 ) ) | 
						
							| 55 | 54 | orbi1d | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝐴  =  𝐵 )  →  ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  ( 𝑥  =  𝐵  ∨  𝑥  =  𝐵 ) ) ) | 
						
							| 56 |  | oridm | ⊢ ( ( 𝑥  =  𝐵  ∨  𝑥  =  𝐵 )  ↔  𝑥  =  𝐵 ) | 
						
							| 57 | 55 56 | bitrdi | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝐴  =  𝐵 )  →  ( ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  𝑥  =  𝐵 ) ) | 
						
							| 58 | 57 | reubidv | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝐴  =  𝐵 )  →  ( ∃! 𝑥  ∈  𝑉 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  ∃! 𝑥  ∈  𝑉 𝑥  =  𝐵 ) ) | 
						
							| 59 | 52 58 | mpbird | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝐴  =  𝐵 )  →  ∃! 𝑥  ∈  𝑉 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 ) ) | 
						
							| 60 | 59 | ex | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴  =  𝐵  →  ∃! 𝑥  ∈  𝑉 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 ) ) ) | 
						
							| 61 | 48 60 | impbid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ∃! 𝑥  ∈  𝑉 ( 𝑥  =  𝐴  ∨  𝑥  =  𝐵 )  ↔  𝐴  =  𝐵 ) ) |