| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq1 |
|
| 2 |
|
eqeq1 |
|
| 3 |
1 2
|
orbi12d |
|
| 4 |
3
|
reu8 |
|
| 5 |
|
simprlr |
|
| 6 |
|
eqeq1 |
|
| 7 |
|
eqeq1 |
|
| 8 |
6 7
|
orbi12d |
|
| 9 |
|
eqeq2 |
|
| 10 |
8 9
|
imbi12d |
|
| 11 |
10
|
rspcv |
|
| 12 |
5 11
|
syl |
|
| 13 |
|
ioran |
|
| 14 |
|
eqid |
|
| 15 |
14
|
pm2.24i |
|
| 16 |
13 15
|
simplbiim |
|
| 17 |
|
eqtr2 |
|
| 18 |
17
|
ancoms |
|
| 19 |
18
|
a1d |
|
| 20 |
19
|
expimpd |
|
| 21 |
16 20
|
ja |
|
| 22 |
21
|
com12 |
|
| 23 |
12 22
|
syld |
|
| 24 |
23
|
ex |
|
| 25 |
|
simprll |
|
| 26 |
|
eqeq1 |
|
| 27 |
|
eqeq1 |
|
| 28 |
26 27
|
orbi12d |
|
| 29 |
|
eqeq2 |
|
| 30 |
28 29
|
imbi12d |
|
| 31 |
30
|
rspcv |
|
| 32 |
25 31
|
syl |
|
| 33 |
|
ioran |
|
| 34 |
|
eqid |
|
| 35 |
34
|
pm2.24i |
|
| 36 |
35
|
adantr |
|
| 37 |
33 36
|
sylbi |
|
| 38 |
17
|
a1d |
|
| 39 |
38
|
expimpd |
|
| 40 |
37 39
|
ja |
|
| 41 |
40
|
com12 |
|
| 42 |
32 41
|
syld |
|
| 43 |
42
|
ex |
|
| 44 |
24 43
|
jaoi |
|
| 45 |
44
|
com12 |
|
| 46 |
45
|
impd |
|
| 47 |
46
|
rexlimdva |
|
| 48 |
4 47
|
biimtrid |
|
| 49 |
|
reueq |
|
| 50 |
49
|
biimpi |
|
| 51 |
50
|
adantl |
|
| 52 |
51
|
adantr |
|
| 53 |
|
eqeq2 |
|
| 54 |
53
|
adantl |
|
| 55 |
54
|
orbi1d |
|
| 56 |
|
oridm |
|
| 57 |
55 56
|
bitrdi |
|
| 58 |
57
|
reubidv |
|
| 59 |
52 58
|
mpbird |
|
| 60 |
59
|
ex |
|
| 61 |
48 60
|
impbid |
|