| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq1 |  |-  ( x = y -> ( x = A <-> y = A ) ) | 
						
							| 2 |  | eqeq1 |  |-  ( x = y -> ( x = B <-> y = B ) ) | 
						
							| 3 | 1 2 | orbi12d |  |-  ( x = y -> ( ( x = A \/ x = B ) <-> ( y = A \/ y = B ) ) ) | 
						
							| 4 | 3 | reu8 |  |-  ( E! x e. V ( x = A \/ x = B ) <-> E. x e. V ( ( x = A \/ x = B ) /\ A. y e. V ( ( y = A \/ y = B ) -> x = y ) ) ) | 
						
							| 5 |  | simprlr |  |-  ( ( x = A /\ ( ( A e. V /\ B e. V ) /\ x e. V ) ) -> B e. V ) | 
						
							| 6 |  | eqeq1 |  |-  ( y = B -> ( y = A <-> B = A ) ) | 
						
							| 7 |  | eqeq1 |  |-  ( y = B -> ( y = B <-> B = B ) ) | 
						
							| 8 | 6 7 | orbi12d |  |-  ( y = B -> ( ( y = A \/ y = B ) <-> ( B = A \/ B = B ) ) ) | 
						
							| 9 |  | eqeq2 |  |-  ( y = B -> ( x = y <-> x = B ) ) | 
						
							| 10 | 8 9 | imbi12d |  |-  ( y = B -> ( ( ( y = A \/ y = B ) -> x = y ) <-> ( ( B = A \/ B = B ) -> x = B ) ) ) | 
						
							| 11 | 10 | rspcv |  |-  ( B e. V -> ( A. y e. V ( ( y = A \/ y = B ) -> x = y ) -> ( ( B = A \/ B = B ) -> x = B ) ) ) | 
						
							| 12 | 5 11 | syl |  |-  ( ( x = A /\ ( ( A e. V /\ B e. V ) /\ x e. V ) ) -> ( A. y e. V ( ( y = A \/ y = B ) -> x = y ) -> ( ( B = A \/ B = B ) -> x = B ) ) ) | 
						
							| 13 |  | ioran |  |-  ( -. ( B = A \/ B = B ) <-> ( -. B = A /\ -. B = B ) ) | 
						
							| 14 |  | eqid |  |-  B = B | 
						
							| 15 | 14 | pm2.24i |  |-  ( -. B = B -> ( ( x = A /\ ( ( A e. V /\ B e. V ) /\ x e. V ) ) -> A = B ) ) | 
						
							| 16 | 13 15 | simplbiim |  |-  ( -. ( B = A \/ B = B ) -> ( ( x = A /\ ( ( A e. V /\ B e. V ) /\ x e. V ) ) -> A = B ) ) | 
						
							| 17 |  | eqtr2 |  |-  ( ( x = A /\ x = B ) -> A = B ) | 
						
							| 18 | 17 | ancoms |  |-  ( ( x = B /\ x = A ) -> A = B ) | 
						
							| 19 | 18 | a1d |  |-  ( ( x = B /\ x = A ) -> ( ( ( A e. V /\ B e. V ) /\ x e. V ) -> A = B ) ) | 
						
							| 20 | 19 | expimpd |  |-  ( x = B -> ( ( x = A /\ ( ( A e. V /\ B e. V ) /\ x e. V ) ) -> A = B ) ) | 
						
							| 21 | 16 20 | ja |  |-  ( ( ( B = A \/ B = B ) -> x = B ) -> ( ( x = A /\ ( ( A e. V /\ B e. V ) /\ x e. V ) ) -> A = B ) ) | 
						
							| 22 | 21 | com12 |  |-  ( ( x = A /\ ( ( A e. V /\ B e. V ) /\ x e. V ) ) -> ( ( ( B = A \/ B = B ) -> x = B ) -> A = B ) ) | 
						
							| 23 | 12 22 | syld |  |-  ( ( x = A /\ ( ( A e. V /\ B e. V ) /\ x e. V ) ) -> ( A. y e. V ( ( y = A \/ y = B ) -> x = y ) -> A = B ) ) | 
						
							| 24 | 23 | ex |  |-  ( x = A -> ( ( ( A e. V /\ B e. V ) /\ x e. V ) -> ( A. y e. V ( ( y = A \/ y = B ) -> x = y ) -> A = B ) ) ) | 
						
							| 25 |  | simprll |  |-  ( ( x = B /\ ( ( A e. V /\ B e. V ) /\ x e. V ) ) -> A e. V ) | 
						
							| 26 |  | eqeq1 |  |-  ( y = A -> ( y = A <-> A = A ) ) | 
						
							| 27 |  | eqeq1 |  |-  ( y = A -> ( y = B <-> A = B ) ) | 
						
							| 28 | 26 27 | orbi12d |  |-  ( y = A -> ( ( y = A \/ y = B ) <-> ( A = A \/ A = B ) ) ) | 
						
							| 29 |  | eqeq2 |  |-  ( y = A -> ( x = y <-> x = A ) ) | 
						
							| 30 | 28 29 | imbi12d |  |-  ( y = A -> ( ( ( y = A \/ y = B ) -> x = y ) <-> ( ( A = A \/ A = B ) -> x = A ) ) ) | 
						
							| 31 | 30 | rspcv |  |-  ( A e. V -> ( A. y e. V ( ( y = A \/ y = B ) -> x = y ) -> ( ( A = A \/ A = B ) -> x = A ) ) ) | 
						
							| 32 | 25 31 | syl |  |-  ( ( x = B /\ ( ( A e. V /\ B e. V ) /\ x e. V ) ) -> ( A. y e. V ( ( y = A \/ y = B ) -> x = y ) -> ( ( A = A \/ A = B ) -> x = A ) ) ) | 
						
							| 33 |  | ioran |  |-  ( -. ( A = A \/ A = B ) <-> ( -. A = A /\ -. A = B ) ) | 
						
							| 34 |  | eqid |  |-  A = A | 
						
							| 35 | 34 | pm2.24i |  |-  ( -. A = A -> ( ( x = B /\ ( ( A e. V /\ B e. V ) /\ x e. V ) ) -> A = B ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( -. A = A /\ -. A = B ) -> ( ( x = B /\ ( ( A e. V /\ B e. V ) /\ x e. V ) ) -> A = B ) ) | 
						
							| 37 | 33 36 | sylbi |  |-  ( -. ( A = A \/ A = B ) -> ( ( x = B /\ ( ( A e. V /\ B e. V ) /\ x e. V ) ) -> A = B ) ) | 
						
							| 38 | 17 | a1d |  |-  ( ( x = A /\ x = B ) -> ( ( ( A e. V /\ B e. V ) /\ x e. V ) -> A = B ) ) | 
						
							| 39 | 38 | expimpd |  |-  ( x = A -> ( ( x = B /\ ( ( A e. V /\ B e. V ) /\ x e. V ) ) -> A = B ) ) | 
						
							| 40 | 37 39 | ja |  |-  ( ( ( A = A \/ A = B ) -> x = A ) -> ( ( x = B /\ ( ( A e. V /\ B e. V ) /\ x e. V ) ) -> A = B ) ) | 
						
							| 41 | 40 | com12 |  |-  ( ( x = B /\ ( ( A e. V /\ B e. V ) /\ x e. V ) ) -> ( ( ( A = A \/ A = B ) -> x = A ) -> A = B ) ) | 
						
							| 42 | 32 41 | syld |  |-  ( ( x = B /\ ( ( A e. V /\ B e. V ) /\ x e. V ) ) -> ( A. y e. V ( ( y = A \/ y = B ) -> x = y ) -> A = B ) ) | 
						
							| 43 | 42 | ex |  |-  ( x = B -> ( ( ( A e. V /\ B e. V ) /\ x e. V ) -> ( A. y e. V ( ( y = A \/ y = B ) -> x = y ) -> A = B ) ) ) | 
						
							| 44 | 24 43 | jaoi |  |-  ( ( x = A \/ x = B ) -> ( ( ( A e. V /\ B e. V ) /\ x e. V ) -> ( A. y e. V ( ( y = A \/ y = B ) -> x = y ) -> A = B ) ) ) | 
						
							| 45 | 44 | com12 |  |-  ( ( ( A e. V /\ B e. V ) /\ x e. V ) -> ( ( x = A \/ x = B ) -> ( A. y e. V ( ( y = A \/ y = B ) -> x = y ) -> A = B ) ) ) | 
						
							| 46 | 45 | impd |  |-  ( ( ( A e. V /\ B e. V ) /\ x e. V ) -> ( ( ( x = A \/ x = B ) /\ A. y e. V ( ( y = A \/ y = B ) -> x = y ) ) -> A = B ) ) | 
						
							| 47 | 46 | rexlimdva |  |-  ( ( A e. V /\ B e. V ) -> ( E. x e. V ( ( x = A \/ x = B ) /\ A. y e. V ( ( y = A \/ y = B ) -> x = y ) ) -> A = B ) ) | 
						
							| 48 | 4 47 | biimtrid |  |-  ( ( A e. V /\ B e. V ) -> ( E! x e. V ( x = A \/ x = B ) -> A = B ) ) | 
						
							| 49 |  | reueq |  |-  ( B e. V <-> E! x e. V x = B ) | 
						
							| 50 | 49 | biimpi |  |-  ( B e. V -> E! x e. V x = B ) | 
						
							| 51 | 50 | adantl |  |-  ( ( A e. V /\ B e. V ) -> E! x e. V x = B ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ( A e. V /\ B e. V ) /\ A = B ) -> E! x e. V x = B ) | 
						
							| 53 |  | eqeq2 |  |-  ( A = B -> ( x = A <-> x = B ) ) | 
						
							| 54 | 53 | adantl |  |-  ( ( ( A e. V /\ B e. V ) /\ A = B ) -> ( x = A <-> x = B ) ) | 
						
							| 55 | 54 | orbi1d |  |-  ( ( ( A e. V /\ B e. V ) /\ A = B ) -> ( ( x = A \/ x = B ) <-> ( x = B \/ x = B ) ) ) | 
						
							| 56 |  | oridm |  |-  ( ( x = B \/ x = B ) <-> x = B ) | 
						
							| 57 | 55 56 | bitrdi |  |-  ( ( ( A e. V /\ B e. V ) /\ A = B ) -> ( ( x = A \/ x = B ) <-> x = B ) ) | 
						
							| 58 | 57 | reubidv |  |-  ( ( ( A e. V /\ B e. V ) /\ A = B ) -> ( E! x e. V ( x = A \/ x = B ) <-> E! x e. V x = B ) ) | 
						
							| 59 | 52 58 | mpbird |  |-  ( ( ( A e. V /\ B e. V ) /\ A = B ) -> E! x e. V ( x = A \/ x = B ) ) | 
						
							| 60 | 59 | ex |  |-  ( ( A e. V /\ B e. V ) -> ( A = B -> E! x e. V ( x = A \/ x = B ) ) ) | 
						
							| 61 | 48 60 | impbid |  |-  ( ( A e. V /\ B e. V ) -> ( E! x e. V ( x = A \/ x = B ) <-> A = B ) ) |