| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reuf1od.f |  |-  ( ph -> F : C -1-1-onto-> B ) | 
						
							| 2 |  | reuf1od.x |  |-  ( ( ph /\ x = ( F ` y ) ) -> ( ps <-> ch ) ) | 
						
							| 3 |  | f1of |  |-  ( F : C -1-1-onto-> B -> F : C --> B ) | 
						
							| 4 | 1 3 | syl |  |-  ( ph -> F : C --> B ) | 
						
							| 5 | 4 | ffvelcdmda |  |-  ( ( ph /\ y e. C ) -> ( F ` y ) e. B ) | 
						
							| 6 |  | f1ofveu |  |-  ( ( F : C -1-1-onto-> B /\ x e. B ) -> E! y e. C ( F ` y ) = x ) | 
						
							| 7 |  | eqcom |  |-  ( x = ( F ` y ) <-> ( F ` y ) = x ) | 
						
							| 8 | 7 | reubii |  |-  ( E! y e. C x = ( F ` y ) <-> E! y e. C ( F ` y ) = x ) | 
						
							| 9 | 6 8 | sylibr |  |-  ( ( F : C -1-1-onto-> B /\ x e. B ) -> E! y e. C x = ( F ` y ) ) | 
						
							| 10 | 1 9 | sylan |  |-  ( ( ph /\ x e. B ) -> E! y e. C x = ( F ` y ) ) | 
						
							| 11 | 5 10 2 | reuxfr1d |  |-  ( ph -> ( E! x e. B ps <-> E! y e. C ch ) ) |