| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reuf1od.f |
|- ( ph -> F : C -1-1-onto-> B ) |
| 2 |
|
reuf1od.x |
|- ( ( ph /\ x = ( F ` y ) ) -> ( ps <-> ch ) ) |
| 3 |
|
f1of |
|- ( F : C -1-1-onto-> B -> F : C --> B ) |
| 4 |
1 3
|
syl |
|- ( ph -> F : C --> B ) |
| 5 |
4
|
ffvelcdmda |
|- ( ( ph /\ y e. C ) -> ( F ` y ) e. B ) |
| 6 |
|
f1ofveu |
|- ( ( F : C -1-1-onto-> B /\ x e. B ) -> E! y e. C ( F ` y ) = x ) |
| 7 |
|
eqcom |
|- ( x = ( F ` y ) <-> ( F ` y ) = x ) |
| 8 |
7
|
reubii |
|- ( E! y e. C x = ( F ` y ) <-> E! y e. C ( F ` y ) = x ) |
| 9 |
6 8
|
sylibr |
|- ( ( F : C -1-1-onto-> B /\ x e. B ) -> E! y e. C x = ( F ` y ) ) |
| 10 |
1 9
|
sylan |
|- ( ( ph /\ x e. B ) -> E! y e. C x = ( F ` y ) ) |
| 11 |
5 10 2
|
reuxfr1d |
|- ( ph -> ( E! x e. B ps <-> E! y e. C ch ) ) |