Metamath Proof Explorer


Theorem reuf1od

Description: There is exactly one element in each of two isomorphic sets. (Contributed by AV, 19-Mar-2023)

Ref Expression
Hypotheses reuf1od.f
|- ( ph -> F : C -1-1-onto-> B )
reuf1od.x
|- ( ( ph /\ x = ( F ` y ) ) -> ( ps <-> ch ) )
Assertion reuf1od
|- ( ph -> ( E! x e. B ps <-> E! y e. C ch ) )

Proof

Step Hyp Ref Expression
1 reuf1od.f
 |-  ( ph -> F : C -1-1-onto-> B )
2 reuf1od.x
 |-  ( ( ph /\ x = ( F ` y ) ) -> ( ps <-> ch ) )
3 f1of
 |-  ( F : C -1-1-onto-> B -> F : C --> B )
4 1 3 syl
 |-  ( ph -> F : C --> B )
5 4 ffvelrnda
 |-  ( ( ph /\ y e. C ) -> ( F ` y ) e. B )
6 f1ofveu
 |-  ( ( F : C -1-1-onto-> B /\ x e. B ) -> E! y e. C ( F ` y ) = x )
7 eqcom
 |-  ( x = ( F ` y ) <-> ( F ` y ) = x )
8 7 reubii
 |-  ( E! y e. C x = ( F ` y ) <-> E! y e. C ( F ` y ) = x )
9 6 8 sylibr
 |-  ( ( F : C -1-1-onto-> B /\ x e. B ) -> E! y e. C x = ( F ` y ) )
10 1 9 sylan
 |-  ( ( ph /\ x e. B ) -> E! y e. C x = ( F ` y ) )
11 5 10 2 reuxfr1d
 |-  ( ph -> ( E! x e. B ps <-> E! y e. C ch ) )