Metamath Proof Explorer


Theorem reuf1od

Description: There is exactly one element in each of two isomorphic sets. (Contributed by AV, 19-Mar-2023)

Ref Expression
Hypotheses reuf1od.f φF:C1-1 ontoB
reuf1od.x φx=Fyψχ
Assertion reuf1od φ∃!xBψ∃!yCχ

Proof

Step Hyp Ref Expression
1 reuf1od.f φF:C1-1 ontoB
2 reuf1od.x φx=Fyψχ
3 f1of F:C1-1 ontoBF:CB
4 1 3 syl φF:CB
5 4 ffvelcdmda φyCFyB
6 f1ofveu F:C1-1 ontoBxB∃!yCFy=x
7 eqcom x=FyFy=x
8 7 reubii ∃!yCx=Fy∃!yCFy=x
9 6 8 sylibr F:C1-1 ontoBxB∃!yCx=Fy
10 1 9 sylan φxB∃!yCx=Fy
11 5 10 2 reuxfr1d φ∃!xBψ∃!yCχ