| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reuf1odnf.f | ⊢ ( 𝜑  →  𝐹 : 𝐶 –1-1-onto→ 𝐵 ) | 
						
							| 2 |  | reuf1odnf.x | ⊢ ( ( 𝜑  ∧  𝑥  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 3 |  | reuf1odnf.z | ⊢ ( 𝑥  =  𝑧  →  ( 𝜓  ↔  𝜃 ) ) | 
						
							| 4 |  | reuf1odnf.n | ⊢ Ⅎ 𝑥 𝜒 | 
						
							| 5 |  | f1of | ⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐵  →  𝐹 : 𝐶 ⟶ 𝐵 ) | 
						
							| 6 | 1 5 | syl | ⊢ ( 𝜑  →  𝐹 : 𝐶 ⟶ 𝐵 ) | 
						
							| 7 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐶 )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 ) | 
						
							| 8 |  | f1ofveu | ⊢ ( ( 𝐹 : 𝐶 –1-1-onto→ 𝐵  ∧  𝑥  ∈  𝐵 )  →  ∃! 𝑦  ∈  𝐶 ( 𝐹 ‘ 𝑦 )  =  𝑥 ) | 
						
							| 9 |  | eqcom | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ 𝑦 )  =  𝑥 ) | 
						
							| 10 | 9 | reubii | ⊢ ( ∃! 𝑦  ∈  𝐶 𝑥  =  ( 𝐹 ‘ 𝑦 )  ↔  ∃! 𝑦  ∈  𝐶 ( 𝐹 ‘ 𝑦 )  =  𝑥 ) | 
						
							| 11 | 8 10 | sylibr | ⊢ ( ( 𝐹 : 𝐶 –1-1-onto→ 𝐵  ∧  𝑥  ∈  𝐵 )  →  ∃! 𝑦  ∈  𝐶 𝑥  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 12 | 1 11 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ∃! 𝑦  ∈  𝐶 𝑥  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 13 |  | sbceq1a | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑦 )  →  ( 𝜓  ↔  [ ( 𝐹 ‘ 𝑦 )  /  𝑥 ] 𝜓 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝜓  ↔  [ ( 𝐹 ‘ 𝑦 )  /  𝑥 ] 𝜓 ) ) | 
						
							| 15 | 3 | cbvsbcvw | ⊢ ( [ ( 𝐹 ‘ 𝑦 )  /  𝑥 ] 𝜓  ↔  [ ( 𝐹 ‘ 𝑦 )  /  𝑧 ] 𝜃 ) | 
						
							| 16 | 14 15 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑥  =  ( 𝐹 ‘ 𝑦 ) )  →  ( 𝜓  ↔  [ ( 𝐹 ‘ 𝑦 )  /  𝑧 ] 𝜃 ) ) | 
						
							| 17 | 7 12 16 | reuxfr1d | ⊢ ( 𝜑  →  ( ∃! 𝑥  ∈  𝐵 𝜓  ↔  ∃! 𝑦  ∈  𝐶 [ ( 𝐹 ‘ 𝑦 )  /  𝑧 ] 𝜃 ) ) | 
						
							| 18 | 15 | a1i | ⊢ ( 𝜑  →  ( [ ( 𝐹 ‘ 𝑦 )  /  𝑥 ] 𝜓  ↔  [ ( 𝐹 ‘ 𝑦 )  /  𝑧 ] 𝜃 ) ) | 
						
							| 19 | 18 | bicomd | ⊢ ( 𝜑  →  ( [ ( 𝐹 ‘ 𝑦 )  /  𝑧 ] 𝜃  ↔  [ ( 𝐹 ‘ 𝑦 )  /  𝑥 ] 𝜓 ) ) | 
						
							| 20 | 19 | reubidv | ⊢ ( 𝜑  →  ( ∃! 𝑦  ∈  𝐶 [ ( 𝐹 ‘ 𝑦 )  /  𝑧 ] 𝜃  ↔  ∃! 𝑦  ∈  𝐶 [ ( 𝐹 ‘ 𝑦 )  /  𝑥 ] 𝜓 ) ) | 
						
							| 21 |  | fvexd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑦 )  ∈  V ) | 
						
							| 22 |  | nfv | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 23 | 4 | a1i | ⊢ ( 𝜑  →  Ⅎ 𝑥 𝜒 ) | 
						
							| 24 | 21 2 22 23 | sbciedf | ⊢ ( 𝜑  →  ( [ ( 𝐹 ‘ 𝑦 )  /  𝑥 ] 𝜓  ↔  𝜒 ) ) | 
						
							| 25 | 24 | reubidv | ⊢ ( 𝜑  →  ( ∃! 𝑦  ∈  𝐶 [ ( 𝐹 ‘ 𝑦 )  /  𝑥 ] 𝜓  ↔  ∃! 𝑦  ∈  𝐶 𝜒 ) ) | 
						
							| 26 | 17 20 25 | 3bitrd | ⊢ ( 𝜑  →  ( ∃! 𝑥  ∈  𝐵 𝜓  ↔  ∃! 𝑦  ∈  𝐶 𝜒 ) ) |