| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reuf1odnf.f |
|- ( ph -> F : C -1-1-onto-> B ) |
| 2 |
|
reuf1odnf.x |
|- ( ( ph /\ x = ( F ` y ) ) -> ( ps <-> ch ) ) |
| 3 |
|
reuf1odnf.z |
|- ( x = z -> ( ps <-> th ) ) |
| 4 |
|
reuf1odnf.n |
|- F/ x ch |
| 5 |
|
f1of |
|- ( F : C -1-1-onto-> B -> F : C --> B ) |
| 6 |
1 5
|
syl |
|- ( ph -> F : C --> B ) |
| 7 |
6
|
ffvelcdmda |
|- ( ( ph /\ y e. C ) -> ( F ` y ) e. B ) |
| 8 |
|
f1ofveu |
|- ( ( F : C -1-1-onto-> B /\ x e. B ) -> E! y e. C ( F ` y ) = x ) |
| 9 |
|
eqcom |
|- ( x = ( F ` y ) <-> ( F ` y ) = x ) |
| 10 |
9
|
reubii |
|- ( E! y e. C x = ( F ` y ) <-> E! y e. C ( F ` y ) = x ) |
| 11 |
8 10
|
sylibr |
|- ( ( F : C -1-1-onto-> B /\ x e. B ) -> E! y e. C x = ( F ` y ) ) |
| 12 |
1 11
|
sylan |
|- ( ( ph /\ x e. B ) -> E! y e. C x = ( F ` y ) ) |
| 13 |
|
sbceq1a |
|- ( x = ( F ` y ) -> ( ps <-> [. ( F ` y ) / x ]. ps ) ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ x = ( F ` y ) ) -> ( ps <-> [. ( F ` y ) / x ]. ps ) ) |
| 15 |
3
|
cbvsbcvw |
|- ( [. ( F ` y ) / x ]. ps <-> [. ( F ` y ) / z ]. th ) |
| 16 |
14 15
|
bitrdi |
|- ( ( ph /\ x = ( F ` y ) ) -> ( ps <-> [. ( F ` y ) / z ]. th ) ) |
| 17 |
7 12 16
|
reuxfr1d |
|- ( ph -> ( E! x e. B ps <-> E! y e. C [. ( F ` y ) / z ]. th ) ) |
| 18 |
15
|
a1i |
|- ( ph -> ( [. ( F ` y ) / x ]. ps <-> [. ( F ` y ) / z ]. th ) ) |
| 19 |
18
|
bicomd |
|- ( ph -> ( [. ( F ` y ) / z ]. th <-> [. ( F ` y ) / x ]. ps ) ) |
| 20 |
19
|
reubidv |
|- ( ph -> ( E! y e. C [. ( F ` y ) / z ]. th <-> E! y e. C [. ( F ` y ) / x ]. ps ) ) |
| 21 |
|
fvexd |
|- ( ph -> ( F ` y ) e. _V ) |
| 22 |
|
nfv |
|- F/ x ph |
| 23 |
4
|
a1i |
|- ( ph -> F/ x ch ) |
| 24 |
21 2 22 23
|
sbciedf |
|- ( ph -> ( [. ( F ` y ) / x ]. ps <-> ch ) ) |
| 25 |
24
|
reubidv |
|- ( ph -> ( E! y e. C [. ( F ` y ) / x ]. ps <-> E! y e. C ch ) ) |
| 26 |
17 20 25
|
3bitrd |
|- ( ph -> ( E! x e. B ps <-> E! y e. C ch ) ) |