| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reuf1odnf.f |  |-  ( ph -> F : C -1-1-onto-> B ) | 
						
							| 2 |  | reuf1odnf.x |  |-  ( ( ph /\ x = ( F ` y ) ) -> ( ps <-> ch ) ) | 
						
							| 3 |  | reuf1odnf.z |  |-  ( x = z -> ( ps <-> th ) ) | 
						
							| 4 |  | reuf1odnf.n |  |-  F/ x ch | 
						
							| 5 |  | f1of |  |-  ( F : C -1-1-onto-> B -> F : C --> B ) | 
						
							| 6 | 1 5 | syl |  |-  ( ph -> F : C --> B ) | 
						
							| 7 | 6 | ffvelcdmda |  |-  ( ( ph /\ y e. C ) -> ( F ` y ) e. B ) | 
						
							| 8 |  | f1ofveu |  |-  ( ( F : C -1-1-onto-> B /\ x e. B ) -> E! y e. C ( F ` y ) = x ) | 
						
							| 9 |  | eqcom |  |-  ( x = ( F ` y ) <-> ( F ` y ) = x ) | 
						
							| 10 | 9 | reubii |  |-  ( E! y e. C x = ( F ` y ) <-> E! y e. C ( F ` y ) = x ) | 
						
							| 11 | 8 10 | sylibr |  |-  ( ( F : C -1-1-onto-> B /\ x e. B ) -> E! y e. C x = ( F ` y ) ) | 
						
							| 12 | 1 11 | sylan |  |-  ( ( ph /\ x e. B ) -> E! y e. C x = ( F ` y ) ) | 
						
							| 13 |  | sbceq1a |  |-  ( x = ( F ` y ) -> ( ps <-> [. ( F ` y ) / x ]. ps ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ x = ( F ` y ) ) -> ( ps <-> [. ( F ` y ) / x ]. ps ) ) | 
						
							| 15 | 3 | cbvsbcvw |  |-  ( [. ( F ` y ) / x ]. ps <-> [. ( F ` y ) / z ]. th ) | 
						
							| 16 | 14 15 | bitrdi |  |-  ( ( ph /\ x = ( F ` y ) ) -> ( ps <-> [. ( F ` y ) / z ]. th ) ) | 
						
							| 17 | 7 12 16 | reuxfr1d |  |-  ( ph -> ( E! x e. B ps <-> E! y e. C [. ( F ` y ) / z ]. th ) ) | 
						
							| 18 | 15 | a1i |  |-  ( ph -> ( [. ( F ` y ) / x ]. ps <-> [. ( F ` y ) / z ]. th ) ) | 
						
							| 19 | 18 | bicomd |  |-  ( ph -> ( [. ( F ` y ) / z ]. th <-> [. ( F ` y ) / x ]. ps ) ) | 
						
							| 20 | 19 | reubidv |  |-  ( ph -> ( E! y e. C [. ( F ` y ) / z ]. th <-> E! y e. C [. ( F ` y ) / x ]. ps ) ) | 
						
							| 21 |  | fvexd |  |-  ( ph -> ( F ` y ) e. _V ) | 
						
							| 22 |  | nfv |  |-  F/ x ph | 
						
							| 23 | 4 | a1i |  |-  ( ph -> F/ x ch ) | 
						
							| 24 | 21 2 22 23 | sbciedf |  |-  ( ph -> ( [. ( F ` y ) / x ]. ps <-> ch ) ) | 
						
							| 25 | 24 | reubidv |  |-  ( ph -> ( E! y e. C [. ( F ` y ) / x ]. ps <-> E! y e. C ch ) ) | 
						
							| 26 | 17 20 25 | 3bitrd |  |-  ( ph -> ( E! x e. B ps <-> E! y e. C ch ) ) |