| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reuprg.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
reuprg.2 |
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) |
| 3 |
1 2
|
reuprg0 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃! 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( ( 𝜓 ∧ ( 𝜒 → 𝐴 = 𝐵 ) ) ∨ ( 𝜒 ∧ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ) ) |
| 4 |
|
orddi |
⊢ ( ( ( 𝜓 ∧ ( 𝜒 → 𝐴 = 𝐵 ) ) ∨ ( 𝜒 ∧ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ↔ ( ( ( 𝜓 ∨ 𝜒 ) ∧ ( 𝜓 ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ∧ ( ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ 𝜒 ) ∧ ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ) ) |
| 5 |
|
curryax |
⊢ ( 𝜓 ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) |
| 6 |
5
|
biantru |
⊢ ( ( 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜓 ∨ 𝜒 ) ∧ ( 𝜓 ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ) |
| 7 |
6
|
bicomi |
⊢ ( ( ( 𝜓 ∨ 𝜒 ) ∧ ( 𝜓 ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ↔ ( 𝜓 ∨ 𝜒 ) ) |
| 8 |
|
curryax |
⊢ ( 𝜒 ∨ ( 𝜒 → 𝐴 = 𝐵 ) ) |
| 9 |
|
orcom |
⊢ ( ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ 𝜒 ) ↔ ( 𝜒 ∨ ( 𝜒 → 𝐴 = 𝐵 ) ) ) |
| 10 |
8 9
|
mpbir |
⊢ ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ 𝜒 ) |
| 11 |
10
|
biantrur |
⊢ ( ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ↔ ( ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ 𝜒 ) ∧ ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ) |
| 12 |
11
|
bicomi |
⊢ ( ( ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ 𝜒 ) ∧ ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ↔ ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ) |
| 13 |
|
pm4.79 |
⊢ ( ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ↔ ( ( 𝜒 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ) |
| 14 |
12 13
|
bitri |
⊢ ( ( ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ 𝜒 ) ∧ ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ↔ ( ( 𝜒 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ) |
| 15 |
7 14
|
anbi12i |
⊢ ( ( ( ( 𝜓 ∨ 𝜒 ) ∧ ( 𝜓 ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ∧ ( ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ 𝜒 ) ∧ ( ( 𝜒 → 𝐴 = 𝐵 ) ∨ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ) ↔ ( ( 𝜓 ∨ 𝜒 ) ∧ ( ( 𝜒 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ) ) |
| 16 |
4 15
|
bitri |
⊢ ( ( ( 𝜓 ∧ ( 𝜒 → 𝐴 = 𝐵 ) ) ∨ ( 𝜒 ∧ ( 𝜓 → 𝐴 = 𝐵 ) ) ) ↔ ( ( 𝜓 ∨ 𝜒 ) ∧ ( ( 𝜒 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ) ) |
| 17 |
3 16
|
bitrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃! 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( ( 𝜓 ∨ 𝜒 ) ∧ ( ( 𝜒 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ) ) ) |