| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reuprg.1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | reuprg.2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 3 | 1 2 | reuprg0 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∃! 𝑥  ∈  { 𝐴 ,  𝐵 } 𝜑  ↔  ( ( 𝜓  ∧  ( 𝜒  →  𝐴  =  𝐵 ) )  ∨  ( 𝜒  ∧  ( 𝜓  →  𝐴  =  𝐵 ) ) ) ) ) | 
						
							| 4 |  | orddi | ⊢ ( ( ( 𝜓  ∧  ( 𝜒  →  𝐴  =  𝐵 ) )  ∨  ( 𝜒  ∧  ( 𝜓  →  𝐴  =  𝐵 ) ) )  ↔  ( ( ( 𝜓  ∨  𝜒 )  ∧  ( 𝜓  ∨  ( 𝜓  →  𝐴  =  𝐵 ) ) )  ∧  ( ( ( 𝜒  →  𝐴  =  𝐵 )  ∨  𝜒 )  ∧  ( ( 𝜒  →  𝐴  =  𝐵 )  ∨  ( 𝜓  →  𝐴  =  𝐵 ) ) ) ) ) | 
						
							| 5 |  | curryax | ⊢ ( 𝜓  ∨  ( 𝜓  →  𝐴  =  𝐵 ) ) | 
						
							| 6 | 5 | biantru | ⊢ ( ( 𝜓  ∨  𝜒 )  ↔  ( ( 𝜓  ∨  𝜒 )  ∧  ( 𝜓  ∨  ( 𝜓  →  𝐴  =  𝐵 ) ) ) ) | 
						
							| 7 | 6 | bicomi | ⊢ ( ( ( 𝜓  ∨  𝜒 )  ∧  ( 𝜓  ∨  ( 𝜓  →  𝐴  =  𝐵 ) ) )  ↔  ( 𝜓  ∨  𝜒 ) ) | 
						
							| 8 |  | curryax | ⊢ ( 𝜒  ∨  ( 𝜒  →  𝐴  =  𝐵 ) ) | 
						
							| 9 |  | orcom | ⊢ ( ( ( 𝜒  →  𝐴  =  𝐵 )  ∨  𝜒 )  ↔  ( 𝜒  ∨  ( 𝜒  →  𝐴  =  𝐵 ) ) ) | 
						
							| 10 | 8 9 | mpbir | ⊢ ( ( 𝜒  →  𝐴  =  𝐵 )  ∨  𝜒 ) | 
						
							| 11 | 10 | biantrur | ⊢ ( ( ( 𝜒  →  𝐴  =  𝐵 )  ∨  ( 𝜓  →  𝐴  =  𝐵 ) )  ↔  ( ( ( 𝜒  →  𝐴  =  𝐵 )  ∨  𝜒 )  ∧  ( ( 𝜒  →  𝐴  =  𝐵 )  ∨  ( 𝜓  →  𝐴  =  𝐵 ) ) ) ) | 
						
							| 12 | 11 | bicomi | ⊢ ( ( ( ( 𝜒  →  𝐴  =  𝐵 )  ∨  𝜒 )  ∧  ( ( 𝜒  →  𝐴  =  𝐵 )  ∨  ( 𝜓  →  𝐴  =  𝐵 ) ) )  ↔  ( ( 𝜒  →  𝐴  =  𝐵 )  ∨  ( 𝜓  →  𝐴  =  𝐵 ) ) ) | 
						
							| 13 |  | pm4.79 | ⊢ ( ( ( 𝜒  →  𝐴  =  𝐵 )  ∨  ( 𝜓  →  𝐴  =  𝐵 ) )  ↔  ( ( 𝜒  ∧  𝜓 )  →  𝐴  =  𝐵 ) ) | 
						
							| 14 | 12 13 | bitri | ⊢ ( ( ( ( 𝜒  →  𝐴  =  𝐵 )  ∨  𝜒 )  ∧  ( ( 𝜒  →  𝐴  =  𝐵 )  ∨  ( 𝜓  →  𝐴  =  𝐵 ) ) )  ↔  ( ( 𝜒  ∧  𝜓 )  →  𝐴  =  𝐵 ) ) | 
						
							| 15 | 7 14 | anbi12i | ⊢ ( ( ( ( 𝜓  ∨  𝜒 )  ∧  ( 𝜓  ∨  ( 𝜓  →  𝐴  =  𝐵 ) ) )  ∧  ( ( ( 𝜒  →  𝐴  =  𝐵 )  ∨  𝜒 )  ∧  ( ( 𝜒  →  𝐴  =  𝐵 )  ∨  ( 𝜓  →  𝐴  =  𝐵 ) ) ) )  ↔  ( ( 𝜓  ∨  𝜒 )  ∧  ( ( 𝜒  ∧  𝜓 )  →  𝐴  =  𝐵 ) ) ) | 
						
							| 16 | 4 15 | bitri | ⊢ ( ( ( 𝜓  ∧  ( 𝜒  →  𝐴  =  𝐵 ) )  ∨  ( 𝜒  ∧  ( 𝜓  →  𝐴  =  𝐵 ) ) )  ↔  ( ( 𝜓  ∨  𝜒 )  ∧  ( ( 𝜒  ∧  𝜓 )  →  𝐴  =  𝐵 ) ) ) | 
						
							| 17 | 3 16 | bitrdi | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∃! 𝑥  ∈  { 𝐴 ,  𝐵 } 𝜑  ↔  ( ( 𝜓  ∨  𝜒 )  ∧  ( ( 𝜒  ∧  𝜓 )  →  𝐴  =  𝐵 ) ) ) ) |