| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reuprg.1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | reuprg.2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 3 |  | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑐  /  𝑥 ] 𝜑 | 
						
							| 4 |  | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑤  /  𝑥 ] 𝜑 | 
						
							| 5 |  | sbceq1a | ⊢ ( 𝑥  =  𝑤  →  ( 𝜑  ↔  [ 𝑤  /  𝑥 ] 𝜑 ) ) | 
						
							| 6 |  | dfsbcq | ⊢ ( 𝑤  =  𝑐  →  ( [ 𝑤  /  𝑥 ] 𝜑  ↔  [ 𝑐  /  𝑥 ] 𝜑 ) ) | 
						
							| 7 | 3 4 5 6 | reu8nf | ⊢ ( ∃! 𝑥  ∈  { 𝐴 ,  𝐵 } 𝜑  ↔  ∃ 𝑥  ∈  { 𝐴 ,  𝐵 } ( 𝜑  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝑥  =  𝑐 ) ) ) | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑥 𝜓 | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑥 { 𝐴 ,  𝐵 } | 
						
							| 10 |  | nfv | ⊢ Ⅎ 𝑥 𝐴  =  𝑐 | 
						
							| 11 | 3 10 | nfim | ⊢ Ⅎ 𝑥 ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐴  =  𝑐 ) | 
						
							| 12 | 9 11 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐴  =  𝑐 ) | 
						
							| 13 | 8 12 | nfan | ⊢ Ⅎ 𝑥 ( 𝜓  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐴  =  𝑐 ) ) | 
						
							| 14 |  | nfv | ⊢ Ⅎ 𝑥 𝜒 | 
						
							| 15 |  | nfv | ⊢ Ⅎ 𝑥 𝐵  =  𝑐 | 
						
							| 16 | 3 15 | nfim | ⊢ Ⅎ 𝑥 ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐵  =  𝑐 ) | 
						
							| 17 | 9 16 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐵  =  𝑐 ) | 
						
							| 18 | 14 17 | nfan | ⊢ Ⅎ 𝑥 ( 𝜒  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐵  =  𝑐 ) ) | 
						
							| 19 |  | eqeq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  =  𝑐  ↔  𝐴  =  𝑐 ) ) | 
						
							| 20 | 19 | imbi2d | ⊢ ( 𝑥  =  𝐴  →  ( ( [ 𝑐  /  𝑥 ] 𝜑  →  𝑥  =  𝑐 )  ↔  ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐴  =  𝑐 ) ) ) | 
						
							| 21 | 20 | ralbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝑥  =  𝑐 )  ↔  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐴  =  𝑐 ) ) ) | 
						
							| 22 | 1 21 | anbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝜑  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝑥  =  𝑐 ) )  ↔  ( 𝜓  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐴  =  𝑐 ) ) ) ) | 
						
							| 23 |  | eqeq1 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑥  =  𝑐  ↔  𝐵  =  𝑐 ) ) | 
						
							| 24 | 23 | imbi2d | ⊢ ( 𝑥  =  𝐵  →  ( ( [ 𝑐  /  𝑥 ] 𝜑  →  𝑥  =  𝑐 )  ↔  ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐵  =  𝑐 ) ) ) | 
						
							| 25 | 24 | ralbidv | ⊢ ( 𝑥  =  𝐵  →  ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝑥  =  𝑐 )  ↔  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐵  =  𝑐 ) ) ) | 
						
							| 26 | 2 25 | anbi12d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝜑  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝑥  =  𝑐 ) )  ↔  ( 𝜒  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐵  =  𝑐 ) ) ) ) | 
						
							| 27 | 13 18 22 26 | rexprgf | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∃ 𝑥  ∈  { 𝐴 ,  𝐵 } ( 𝜑  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝑥  =  𝑐 ) )  ↔  ( ( 𝜓  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐴  =  𝑐 ) )  ∨  ( 𝜒  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐵  =  𝑐 ) ) ) ) ) | 
						
							| 28 |  | dfsbcq | ⊢ ( 𝑐  =  𝐴  →  ( [ 𝑐  /  𝑥 ] 𝜑  ↔  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 29 |  | eqeq2 | ⊢ ( 𝑐  =  𝐴  →  ( 𝐴  =  𝑐  ↔  𝐴  =  𝐴 ) ) | 
						
							| 30 | 28 29 | imbi12d | ⊢ ( 𝑐  =  𝐴  →  ( ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐴  =  𝑐 )  ↔  ( [ 𝐴  /  𝑥 ] 𝜑  →  𝐴  =  𝐴 ) ) ) | 
						
							| 31 |  | dfsbcq | ⊢ ( 𝑐  =  𝐵  →  ( [ 𝑐  /  𝑥 ] 𝜑  ↔  [ 𝐵  /  𝑥 ] 𝜑 ) ) | 
						
							| 32 |  | eqeq2 | ⊢ ( 𝑐  =  𝐵  →  ( 𝐴  =  𝑐  ↔  𝐴  =  𝐵 ) ) | 
						
							| 33 | 31 32 | imbi12d | ⊢ ( 𝑐  =  𝐵  →  ( ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐴  =  𝑐 )  ↔  ( [ 𝐵  /  𝑥 ] 𝜑  →  𝐴  =  𝐵 ) ) ) | 
						
							| 34 | 30 33 | ralprg | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐴  =  𝑐 )  ↔  ( ( [ 𝐴  /  𝑥 ] 𝜑  →  𝐴  =  𝐴 )  ∧  ( [ 𝐵  /  𝑥 ] 𝜑  →  𝐴  =  𝐵 ) ) ) ) | 
						
							| 35 |  | eqidd | ⊢ ( [ 𝐴  /  𝑥 ] 𝜑  →  𝐴  =  𝐴 ) | 
						
							| 36 | 35 | biantrur | ⊢ ( ( [ 𝐵  /  𝑥 ] 𝜑  →  𝐴  =  𝐵 )  ↔  ( ( [ 𝐴  /  𝑥 ] 𝜑  →  𝐴  =  𝐴 )  ∧  ( [ 𝐵  /  𝑥 ] 𝜑  →  𝐴  =  𝐵 ) ) ) | 
						
							| 37 | 2 | sbcieg | ⊢ ( 𝐵  ∈  𝑊  →  ( [ 𝐵  /  𝑥 ] 𝜑  ↔  𝜒 ) ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( [ 𝐵  /  𝑥 ] 𝜑  ↔  𝜒 ) ) | 
						
							| 39 | 38 | imbi1d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ( [ 𝐵  /  𝑥 ] 𝜑  →  𝐴  =  𝐵 )  ↔  ( 𝜒  →  𝐴  =  𝐵 ) ) ) | 
						
							| 40 | 36 39 | bitr3id | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ( ( [ 𝐴  /  𝑥 ] 𝜑  →  𝐴  =  𝐴 )  ∧  ( [ 𝐵  /  𝑥 ] 𝜑  →  𝐴  =  𝐵 ) )  ↔  ( 𝜒  →  𝐴  =  𝐵 ) ) ) | 
						
							| 41 | 34 40 | bitrd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐴  =  𝑐 )  ↔  ( 𝜒  →  𝐴  =  𝐵 ) ) ) | 
						
							| 42 | 41 | anbi2d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ( 𝜓  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐴  =  𝑐 ) )  ↔  ( 𝜓  ∧  ( 𝜒  →  𝐴  =  𝐵 ) ) ) ) | 
						
							| 43 |  | eqeq2 | ⊢ ( 𝑐  =  𝐴  →  ( 𝐵  =  𝑐  ↔  𝐵  =  𝐴 ) ) | 
						
							| 44 | 28 43 | imbi12d | ⊢ ( 𝑐  =  𝐴  →  ( ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐵  =  𝑐 )  ↔  ( [ 𝐴  /  𝑥 ] 𝜑  →  𝐵  =  𝐴 ) ) ) | 
						
							| 45 |  | eqeq2 | ⊢ ( 𝑐  =  𝐵  →  ( 𝐵  =  𝑐  ↔  𝐵  =  𝐵 ) ) | 
						
							| 46 | 31 45 | imbi12d | ⊢ ( 𝑐  =  𝐵  →  ( ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐵  =  𝑐 )  ↔  ( [ 𝐵  /  𝑥 ] 𝜑  →  𝐵  =  𝐵 ) ) ) | 
						
							| 47 | 44 46 | ralprg | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐵  =  𝑐 )  ↔  ( ( [ 𝐴  /  𝑥 ] 𝜑  →  𝐵  =  𝐴 )  ∧  ( [ 𝐵  /  𝑥 ] 𝜑  →  𝐵  =  𝐵 ) ) ) ) | 
						
							| 48 |  | eqidd | ⊢ ( [ 𝐵  /  𝑥 ] 𝜑  →  𝐵  =  𝐵 ) | 
						
							| 49 | 48 | biantru | ⊢ ( ( [ 𝐴  /  𝑥 ] 𝜑  →  𝐵  =  𝐴 )  ↔  ( ( [ 𝐴  /  𝑥 ] 𝜑  →  𝐵  =  𝐴 )  ∧  ( [ 𝐵  /  𝑥 ] 𝜑  →  𝐵  =  𝐵 ) ) ) | 
						
							| 50 | 1 | sbcieg | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝜑  ↔  𝜓 ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( [ 𝐴  /  𝑥 ] 𝜑  ↔  𝜓 ) ) | 
						
							| 52 | 51 | imbi1d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ( [ 𝐴  /  𝑥 ] 𝜑  →  𝐵  =  𝐴 )  ↔  ( 𝜓  →  𝐵  =  𝐴 ) ) ) | 
						
							| 53 | 49 52 | bitr3id | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ( ( [ 𝐴  /  𝑥 ] 𝜑  →  𝐵  =  𝐴 )  ∧  ( [ 𝐵  /  𝑥 ] 𝜑  →  𝐵  =  𝐵 ) )  ↔  ( 𝜓  →  𝐵  =  𝐴 ) ) ) | 
						
							| 54 | 47 53 | bitrd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐵  =  𝑐 )  ↔  ( 𝜓  →  𝐵  =  𝐴 ) ) ) | 
						
							| 55 | 54 | anbi2d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ( 𝜒  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐵  =  𝑐 ) )  ↔  ( 𝜒  ∧  ( 𝜓  →  𝐵  =  𝐴 ) ) ) ) | 
						
							| 56 |  | eqcom | ⊢ ( 𝐵  =  𝐴  ↔  𝐴  =  𝐵 ) | 
						
							| 57 | 56 | imbi2i | ⊢ ( ( 𝜓  →  𝐵  =  𝐴 )  ↔  ( 𝜓  →  𝐴  =  𝐵 ) ) | 
						
							| 58 | 57 | anbi2i | ⊢ ( ( 𝜒  ∧  ( 𝜓  →  𝐵  =  𝐴 ) )  ↔  ( 𝜒  ∧  ( 𝜓  →  𝐴  =  𝐵 ) ) ) | 
						
							| 59 | 55 58 | bitrdi | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ( 𝜒  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐵  =  𝑐 ) )  ↔  ( 𝜒  ∧  ( 𝜓  →  𝐴  =  𝐵 ) ) ) ) | 
						
							| 60 | 42 59 | orbi12d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ( ( 𝜓  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐴  =  𝑐 ) )  ∨  ( 𝜒  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝐵  =  𝑐 ) ) )  ↔  ( ( 𝜓  ∧  ( 𝜒  →  𝐴  =  𝐵 ) )  ∨  ( 𝜒  ∧  ( 𝜓  →  𝐴  =  𝐵 ) ) ) ) ) | 
						
							| 61 | 27 60 | bitrd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∃ 𝑥  ∈  { 𝐴 ,  𝐵 } ( 𝜑  ∧  ∀ 𝑐  ∈  { 𝐴 ,  𝐵 } ( [ 𝑐  /  𝑥 ] 𝜑  →  𝑥  =  𝑐 ) )  ↔  ( ( 𝜓  ∧  ( 𝜒  →  𝐴  =  𝐵 ) )  ∨  ( 𝜒  ∧  ( 𝜓  →  𝐴  =  𝐵 ) ) ) ) ) | 
						
							| 62 | 7 61 | bitrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ∃! 𝑥  ∈  { 𝐴 ,  𝐵 } 𝜑  ↔  ( ( 𝜓  ∧  ( 𝜒  →  𝐴  =  𝐵 ) )  ∨  ( 𝜒  ∧  ( 𝜓  →  𝐴  =  𝐵 ) ) ) ) ) |