| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rgspnid.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 2 |
|
rgspnid.sr |
⊢ ( 𝜑 → 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) |
| 3 |
|
rgspnid.sp |
⊢ ( 𝜑 → 𝑆 = ( ( RingSpan ‘ 𝑅 ) ‘ 𝐴 ) ) |
| 4 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 6 |
5
|
subrgss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 8 |
|
eqidd |
⊢ ( 𝜑 → ( RingSpan ‘ 𝑅 ) = ( RingSpan ‘ 𝑅 ) ) |
| 9 |
|
ssidd |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐴 ) |
| 10 |
1 4 7 8 3 2 9
|
rgspnmin |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐴 ) |
| 11 |
1 4 7 8 3
|
rgspnssid |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
| 12 |
10 11
|
eqssd |
⊢ ( 𝜑 → 𝑆 = 𝐴 ) |