Metamath Proof Explorer


Theorem rgspnid

Description: The span of a subring is itself. (Contributed by Stefan O'Rear, 30-Nov-2014)

Ref Expression
Hypotheses rgspnid.r ( 𝜑𝑅 ∈ Ring )
rgspnid.sr ( 𝜑𝐴 ∈ ( SubRing ‘ 𝑅 ) )
rgspnid.sp ( 𝜑𝑆 = ( ( RingSpan ‘ 𝑅 ) ‘ 𝐴 ) )
Assertion rgspnid ( 𝜑𝑆 = 𝐴 )

Proof

Step Hyp Ref Expression
1 rgspnid.r ( 𝜑𝑅 ∈ Ring )
2 rgspnid.sr ( 𝜑𝐴 ∈ ( SubRing ‘ 𝑅 ) )
3 rgspnid.sp ( 𝜑𝑆 = ( ( RingSpan ‘ 𝑅 ) ‘ 𝐴 ) )
4 eqidd ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) )
5 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
6 5 subrgss ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) )
7 2 6 syl ( 𝜑𝐴 ⊆ ( Base ‘ 𝑅 ) )
8 eqidd ( 𝜑 → ( RingSpan ‘ 𝑅 ) = ( RingSpan ‘ 𝑅 ) )
9 ssidd ( 𝜑𝐴𝐴 )
10 1 4 7 8 3 2 9 rgspnmin ( 𝜑𝑆𝐴 )
11 1 4 7 8 3 rgspnssid ( 𝜑𝐴𝑆 )
12 10 11 eqssd ( 𝜑𝑆 = 𝐴 )