Metamath Proof Explorer


Theorem rgspnid

Description: The span of a subring is itself. (Contributed by Stefan O'Rear, 30-Nov-2014)

Ref Expression
Hypotheses rgspnid.r φ R Ring
rgspnid.sr φ A SubRing R
rgspnid.sp φ S = RingSpan R A
Assertion rgspnid φ S = A

Proof

Step Hyp Ref Expression
1 rgspnid.r φ R Ring
2 rgspnid.sr φ A SubRing R
3 rgspnid.sp φ S = RingSpan R A
4 eqidd φ Base R = Base R
5 eqid Base R = Base R
6 5 subrgss A SubRing R A Base R
7 2 6 syl φ A Base R
8 eqidd φ RingSpan R = RingSpan R
9 ssidd φ A A
10 1 4 7 8 3 2 9 rgspnmin φ S A
11 1 4 7 8 3 rgspnssid φ A S
12 10 11 eqssd φ S = A