Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
Algebraic integers I
rgspnid
Next ⟩
rngunsnply
Metamath Proof Explorer
Ascii
Unicode
Theorem
rgspnid
Description:
The span of a subring is itself.
(Contributed by
Stefan O'Rear
, 30-Nov-2014)
Ref
Expression
Hypotheses
rgspnid.r
⊢
φ
→
R
∈
Ring
rgspnid.sr
⊢
φ
→
A
∈
SubRing
⁡
R
rgspnid.sp
⊢
φ
→
S
=
RingSpan
⁡
R
⁡
A
Assertion
rgspnid
⊢
φ
→
S
=
A
Proof
Step
Hyp
Ref
Expression
1
rgspnid.r
⊢
φ
→
R
∈
Ring
2
rgspnid.sr
⊢
φ
→
A
∈
SubRing
⁡
R
3
rgspnid.sp
⊢
φ
→
S
=
RingSpan
⁡
R
⁡
A
4
eqidd
⊢
φ
→
Base
R
=
Base
R
5
eqid
⊢
Base
R
=
Base
R
6
5
subrgss
⊢
A
∈
SubRing
⁡
R
→
A
⊆
Base
R
7
2
6
syl
⊢
φ
→
A
⊆
Base
R
8
eqidd
⊢
φ
→
RingSpan
⁡
R
=
RingSpan
⁡
R
9
ssidd
⊢
φ
→
A
⊆
A
10
1
4
7
8
3
2
9
rgspnmin
⊢
φ
→
S
⊆
A
11
1
4
7
8
3
rgspnssid
⊢
φ
→
A
⊆
S
12
10
11
eqssd
⊢
φ
→
S
=
A