Metamath Proof Explorer


Theorem rgspnmin

Description: The ring-span is contained in all subspaces which contain all the generators. (Contributed by Stefan O'Rear, 30-Nov-2014)

Ref Expression
Hypotheses rgspnval.r φ R Ring
rgspnval.b φ B = Base R
rgspnval.ss φ A B
rgspnval.n φ N = RingSpan R
rgspnval.sp φ U = N A
rgspnmin.sr φ S SubRing R
rgspnmin.ss φ A S
Assertion rgspnmin φ U S

Proof

Step Hyp Ref Expression
1 rgspnval.r φ R Ring
2 rgspnval.b φ B = Base R
3 rgspnval.ss φ A B
4 rgspnval.n φ N = RingSpan R
5 rgspnval.sp φ U = N A
6 rgspnmin.sr φ S SubRing R
7 rgspnmin.ss φ A S
8 1 2 3 4 5 rgspnval φ U = t SubRing R | A t
9 sseq2 t = S A t A S
10 9 elrab S t SubRing R | A t S SubRing R A S
11 6 7 10 sylanbrc φ S t SubRing R | A t
12 intss1 S t SubRing R | A t t SubRing R | A t S
13 11 12 syl φ t SubRing R | A t S
14 8 13 eqsstrd φ U S