Metamath Proof Explorer


Theorem rgspnid

Description: The span of a subring is itself. (Contributed by Stefan O'Rear, 30-Nov-2014)

Ref Expression
Hypotheses rgspnid.r
|- ( ph -> R e. Ring )
rgspnid.sr
|- ( ph -> A e. ( SubRing ` R ) )
rgspnid.sp
|- ( ph -> S = ( ( RingSpan ` R ) ` A ) )
Assertion rgspnid
|- ( ph -> S = A )

Proof

Step Hyp Ref Expression
1 rgspnid.r
 |-  ( ph -> R e. Ring )
2 rgspnid.sr
 |-  ( ph -> A e. ( SubRing ` R ) )
3 rgspnid.sp
 |-  ( ph -> S = ( ( RingSpan ` R ) ` A ) )
4 eqidd
 |-  ( ph -> ( Base ` R ) = ( Base ` R ) )
5 eqid
 |-  ( Base ` R ) = ( Base ` R )
6 5 subrgss
 |-  ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) )
7 2 6 syl
 |-  ( ph -> A C_ ( Base ` R ) )
8 eqidd
 |-  ( ph -> ( RingSpan ` R ) = ( RingSpan ` R ) )
9 ssidd
 |-  ( ph -> A C_ A )
10 1 4 7 8 3 2 9 rgspnmin
 |-  ( ph -> S C_ A )
11 1 4 7 8 3 rgspnssid
 |-  ( ph -> A C_ S )
12 10 11 eqssd
 |-  ( ph -> S = A )