| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rgspnid.r |
|- ( ph -> R e. Ring ) |
| 2 |
|
rgspnid.sr |
|- ( ph -> A e. ( SubRing ` R ) ) |
| 3 |
|
rgspnid.sp |
|- ( ph -> S = ( ( RingSpan ` R ) ` A ) ) |
| 4 |
|
eqidd |
|- ( ph -> ( Base ` R ) = ( Base ` R ) ) |
| 5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 6 |
5
|
subrgss |
|- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
| 7 |
2 6
|
syl |
|- ( ph -> A C_ ( Base ` R ) ) |
| 8 |
|
eqidd |
|- ( ph -> ( RingSpan ` R ) = ( RingSpan ` R ) ) |
| 9 |
|
ssidd |
|- ( ph -> A C_ A ) |
| 10 |
1 4 7 8 3 2 9
|
rgspnmin |
|- ( ph -> S C_ A ) |
| 11 |
1 4 7 8 3
|
rgspnssid |
|- ( ph -> A C_ S ) |
| 12 |
10 11
|
eqssd |
|- ( ph -> S = A ) |