Step |
Hyp |
Ref |
Expression |
1 |
|
rngunsnply.b |
|- ( ph -> B e. ( SubRing ` CCfld ) ) |
2 |
|
rngunsnply.x |
|- ( ph -> X e. CC ) |
3 |
|
rngunsnply.s |
|- ( ph -> S = ( ( RingSpan ` CCfld ) ` ( B u. { X } ) ) ) |
4 |
3
|
eleq2d |
|- ( ph -> ( V e. S <-> V e. ( ( RingSpan ` CCfld ) ` ( B u. { X } ) ) ) ) |
5 |
|
cnring |
|- CCfld e. Ring |
6 |
5
|
a1i |
|- ( ph -> CCfld e. Ring ) |
7 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
8 |
7
|
a1i |
|- ( ph -> CC = ( Base ` CCfld ) ) |
9 |
7
|
subrgss |
|- ( B e. ( SubRing ` CCfld ) -> B C_ CC ) |
10 |
1 9
|
syl |
|- ( ph -> B C_ CC ) |
11 |
2
|
snssd |
|- ( ph -> { X } C_ CC ) |
12 |
10 11
|
unssd |
|- ( ph -> ( B u. { X } ) C_ CC ) |
13 |
|
eqidd |
|- ( ph -> ( RingSpan ` CCfld ) = ( RingSpan ` CCfld ) ) |
14 |
|
eqidd |
|- ( ph -> ( ( RingSpan ` CCfld ) ` ( B u. { X } ) ) = ( ( RingSpan ` CCfld ) ` ( B u. { X } ) ) ) |
15 |
|
eqidd |
|- ( ph -> ( CCfld |`s { a | E. p e. ( Poly ` B ) a = ( p ` X ) } ) = ( CCfld |`s { a | E. p e. ( Poly ` B ) a = ( p ` X ) } ) ) |
16 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
17 |
16
|
a1i |
|- ( ph -> 0 = ( 0g ` CCfld ) ) |
18 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
19 |
18
|
a1i |
|- ( ph -> + = ( +g ` CCfld ) ) |
20 |
|
plyf |
|- ( p e. ( Poly ` B ) -> p : CC --> CC ) |
21 |
|
ffvelrn |
|- ( ( p : CC --> CC /\ X e. CC ) -> ( p ` X ) e. CC ) |
22 |
20 2 21
|
syl2anr |
|- ( ( ph /\ p e. ( Poly ` B ) ) -> ( p ` X ) e. CC ) |
23 |
|
eleq1 |
|- ( a = ( p ` X ) -> ( a e. CC <-> ( p ` X ) e. CC ) ) |
24 |
22 23
|
syl5ibrcom |
|- ( ( ph /\ p e. ( Poly ` B ) ) -> ( a = ( p ` X ) -> a e. CC ) ) |
25 |
24
|
rexlimdva |
|- ( ph -> ( E. p e. ( Poly ` B ) a = ( p ` X ) -> a e. CC ) ) |
26 |
25
|
ss2abdv |
|- ( ph -> { a | E. p e. ( Poly ` B ) a = ( p ` X ) } C_ { a | a e. CC } ) |
27 |
|
abid2 |
|- { a | a e. CC } = CC |
28 |
27 7
|
eqtri |
|- { a | a e. CC } = ( Base ` CCfld ) |
29 |
26 28
|
sseqtrdi |
|- ( ph -> { a | E. p e. ( Poly ` B ) a = ( p ` X ) } C_ ( Base ` CCfld ) ) |
30 |
|
abid2 |
|- { a | a e. B } = B |
31 |
|
plyconst |
|- ( ( B C_ CC /\ a e. B ) -> ( CC X. { a } ) e. ( Poly ` B ) ) |
32 |
10 31
|
sylan |
|- ( ( ph /\ a e. B ) -> ( CC X. { a } ) e. ( Poly ` B ) ) |
33 |
2
|
adantr |
|- ( ( ph /\ a e. B ) -> X e. CC ) |
34 |
|
vex |
|- a e. _V |
35 |
34
|
fvconst2 |
|- ( X e. CC -> ( ( CC X. { a } ) ` X ) = a ) |
36 |
33 35
|
syl |
|- ( ( ph /\ a e. B ) -> ( ( CC X. { a } ) ` X ) = a ) |
37 |
36
|
eqcomd |
|- ( ( ph /\ a e. B ) -> a = ( ( CC X. { a } ) ` X ) ) |
38 |
|
fveq1 |
|- ( p = ( CC X. { a } ) -> ( p ` X ) = ( ( CC X. { a } ) ` X ) ) |
39 |
38
|
rspceeqv |
|- ( ( ( CC X. { a } ) e. ( Poly ` B ) /\ a = ( ( CC X. { a } ) ` X ) ) -> E. p e. ( Poly ` B ) a = ( p ` X ) ) |
40 |
32 37 39
|
syl2anc |
|- ( ( ph /\ a e. B ) -> E. p e. ( Poly ` B ) a = ( p ` X ) ) |
41 |
40
|
ex |
|- ( ph -> ( a e. B -> E. p e. ( Poly ` B ) a = ( p ` X ) ) ) |
42 |
41
|
ss2abdv |
|- ( ph -> { a | a e. B } C_ { a | E. p e. ( Poly ` B ) a = ( p ` X ) } ) |
43 |
30 42
|
eqsstrrid |
|- ( ph -> B C_ { a | E. p e. ( Poly ` B ) a = ( p ` X ) } ) |
44 |
|
subrgsubg |
|- ( B e. ( SubRing ` CCfld ) -> B e. ( SubGrp ` CCfld ) ) |
45 |
1 44
|
syl |
|- ( ph -> B e. ( SubGrp ` CCfld ) ) |
46 |
16
|
subg0cl |
|- ( B e. ( SubGrp ` CCfld ) -> 0 e. B ) |
47 |
45 46
|
syl |
|- ( ph -> 0 e. B ) |
48 |
43 47
|
sseldd |
|- ( ph -> 0 e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } ) |
49 |
|
biid |
|- ( ph <-> ph ) |
50 |
|
vex |
|- b e. _V |
51 |
|
eqeq1 |
|- ( a = b -> ( a = ( p ` X ) <-> b = ( p ` X ) ) ) |
52 |
51
|
rexbidv |
|- ( a = b -> ( E. p e. ( Poly ` B ) a = ( p ` X ) <-> E. p e. ( Poly ` B ) b = ( p ` X ) ) ) |
53 |
|
fveq1 |
|- ( p = e -> ( p ` X ) = ( e ` X ) ) |
54 |
53
|
eqeq2d |
|- ( p = e -> ( b = ( p ` X ) <-> b = ( e ` X ) ) ) |
55 |
54
|
cbvrexvw |
|- ( E. p e. ( Poly ` B ) b = ( p ` X ) <-> E. e e. ( Poly ` B ) b = ( e ` X ) ) |
56 |
52 55
|
bitrdi |
|- ( a = b -> ( E. p e. ( Poly ` B ) a = ( p ` X ) <-> E. e e. ( Poly ` B ) b = ( e ` X ) ) ) |
57 |
50 56
|
elab |
|- ( b e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } <-> E. e e. ( Poly ` B ) b = ( e ` X ) ) |
58 |
|
vex |
|- c e. _V |
59 |
|
eqeq1 |
|- ( a = c -> ( a = ( p ` X ) <-> c = ( p ` X ) ) ) |
60 |
59
|
rexbidv |
|- ( a = c -> ( E. p e. ( Poly ` B ) a = ( p ` X ) <-> E. p e. ( Poly ` B ) c = ( p ` X ) ) ) |
61 |
|
fveq1 |
|- ( p = d -> ( p ` X ) = ( d ` X ) ) |
62 |
61
|
eqeq2d |
|- ( p = d -> ( c = ( p ` X ) <-> c = ( d ` X ) ) ) |
63 |
62
|
cbvrexvw |
|- ( E. p e. ( Poly ` B ) c = ( p ` X ) <-> E. d e. ( Poly ` B ) c = ( d ` X ) ) |
64 |
60 63
|
bitrdi |
|- ( a = c -> ( E. p e. ( Poly ` B ) a = ( p ` X ) <-> E. d e. ( Poly ` B ) c = ( d ` X ) ) ) |
65 |
58 64
|
elab |
|- ( c e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } <-> E. d e. ( Poly ` B ) c = ( d ` X ) ) |
66 |
|
simplr |
|- ( ( ( ph /\ e e. ( Poly ` B ) ) /\ d e. ( Poly ` B ) ) -> e e. ( Poly ` B ) ) |
67 |
|
simpr |
|- ( ( ( ph /\ e e. ( Poly ` B ) ) /\ d e. ( Poly ` B ) ) -> d e. ( Poly ` B ) ) |
68 |
18
|
subrgacl |
|- ( ( B e. ( SubRing ` CCfld ) /\ a e. B /\ b e. B ) -> ( a + b ) e. B ) |
69 |
68
|
3expb |
|- ( ( B e. ( SubRing ` CCfld ) /\ ( a e. B /\ b e. B ) ) -> ( a + b ) e. B ) |
70 |
1 69
|
sylan |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a + b ) e. B ) |
71 |
70
|
adantlr |
|- ( ( ( ph /\ e e. ( Poly ` B ) ) /\ ( a e. B /\ b e. B ) ) -> ( a + b ) e. B ) |
72 |
71
|
adantlr |
|- ( ( ( ( ph /\ e e. ( Poly ` B ) ) /\ d e. ( Poly ` B ) ) /\ ( a e. B /\ b e. B ) ) -> ( a + b ) e. B ) |
73 |
66 67 72
|
plyadd |
|- ( ( ( ph /\ e e. ( Poly ` B ) ) /\ d e. ( Poly ` B ) ) -> ( e oF + d ) e. ( Poly ` B ) ) |
74 |
|
plyf |
|- ( e e. ( Poly ` B ) -> e : CC --> CC ) |
75 |
74
|
ffnd |
|- ( e e. ( Poly ` B ) -> e Fn CC ) |
76 |
75
|
ad2antlr |
|- ( ( ( ph /\ e e. ( Poly ` B ) ) /\ d e. ( Poly ` B ) ) -> e Fn CC ) |
77 |
|
plyf |
|- ( d e. ( Poly ` B ) -> d : CC --> CC ) |
78 |
77
|
ffnd |
|- ( d e. ( Poly ` B ) -> d Fn CC ) |
79 |
78
|
adantl |
|- ( ( ( ph /\ e e. ( Poly ` B ) ) /\ d e. ( Poly ` B ) ) -> d Fn CC ) |
80 |
|
cnex |
|- CC e. _V |
81 |
80
|
a1i |
|- ( ( ( ph /\ e e. ( Poly ` B ) ) /\ d e. ( Poly ` B ) ) -> CC e. _V ) |
82 |
2
|
ad2antrr |
|- ( ( ( ph /\ e e. ( Poly ` B ) ) /\ d e. ( Poly ` B ) ) -> X e. CC ) |
83 |
|
fnfvof |
|- ( ( ( e Fn CC /\ d Fn CC ) /\ ( CC e. _V /\ X e. CC ) ) -> ( ( e oF + d ) ` X ) = ( ( e ` X ) + ( d ` X ) ) ) |
84 |
76 79 81 82 83
|
syl22anc |
|- ( ( ( ph /\ e e. ( Poly ` B ) ) /\ d e. ( Poly ` B ) ) -> ( ( e oF + d ) ` X ) = ( ( e ` X ) + ( d ` X ) ) ) |
85 |
84
|
eqcomd |
|- ( ( ( ph /\ e e. ( Poly ` B ) ) /\ d e. ( Poly ` B ) ) -> ( ( e ` X ) + ( d ` X ) ) = ( ( e oF + d ) ` X ) ) |
86 |
|
fveq1 |
|- ( p = ( e oF + d ) -> ( p ` X ) = ( ( e oF + d ) ` X ) ) |
87 |
86
|
rspceeqv |
|- ( ( ( e oF + d ) e. ( Poly ` B ) /\ ( ( e ` X ) + ( d ` X ) ) = ( ( e oF + d ) ` X ) ) -> E. p e. ( Poly ` B ) ( ( e ` X ) + ( d ` X ) ) = ( p ` X ) ) |
88 |
73 85 87
|
syl2anc |
|- ( ( ( ph /\ e e. ( Poly ` B ) ) /\ d e. ( Poly ` B ) ) -> E. p e. ( Poly ` B ) ( ( e ` X ) + ( d ` X ) ) = ( p ` X ) ) |
89 |
|
oveq2 |
|- ( c = ( d ` X ) -> ( ( e ` X ) + c ) = ( ( e ` X ) + ( d ` X ) ) ) |
90 |
89
|
eqeq1d |
|- ( c = ( d ` X ) -> ( ( ( e ` X ) + c ) = ( p ` X ) <-> ( ( e ` X ) + ( d ` X ) ) = ( p ` X ) ) ) |
91 |
90
|
rexbidv |
|- ( c = ( d ` X ) -> ( E. p e. ( Poly ` B ) ( ( e ` X ) + c ) = ( p ` X ) <-> E. p e. ( Poly ` B ) ( ( e ` X ) + ( d ` X ) ) = ( p ` X ) ) ) |
92 |
88 91
|
syl5ibrcom |
|- ( ( ( ph /\ e e. ( Poly ` B ) ) /\ d e. ( Poly ` B ) ) -> ( c = ( d ` X ) -> E. p e. ( Poly ` B ) ( ( e ` X ) + c ) = ( p ` X ) ) ) |
93 |
92
|
rexlimdva |
|- ( ( ph /\ e e. ( Poly ` B ) ) -> ( E. d e. ( Poly ` B ) c = ( d ` X ) -> E. p e. ( Poly ` B ) ( ( e ` X ) + c ) = ( p ` X ) ) ) |
94 |
|
oveq1 |
|- ( b = ( e ` X ) -> ( b + c ) = ( ( e ` X ) + c ) ) |
95 |
94
|
eqeq1d |
|- ( b = ( e ` X ) -> ( ( b + c ) = ( p ` X ) <-> ( ( e ` X ) + c ) = ( p ` X ) ) ) |
96 |
95
|
rexbidv |
|- ( b = ( e ` X ) -> ( E. p e. ( Poly ` B ) ( b + c ) = ( p ` X ) <-> E. p e. ( Poly ` B ) ( ( e ` X ) + c ) = ( p ` X ) ) ) |
97 |
96
|
imbi2d |
|- ( b = ( e ` X ) -> ( ( E. d e. ( Poly ` B ) c = ( d ` X ) -> E. p e. ( Poly ` B ) ( b + c ) = ( p ` X ) ) <-> ( E. d e. ( Poly ` B ) c = ( d ` X ) -> E. p e. ( Poly ` B ) ( ( e ` X ) + c ) = ( p ` X ) ) ) ) |
98 |
93 97
|
syl5ibrcom |
|- ( ( ph /\ e e. ( Poly ` B ) ) -> ( b = ( e ` X ) -> ( E. d e. ( Poly ` B ) c = ( d ` X ) -> E. p e. ( Poly ` B ) ( b + c ) = ( p ` X ) ) ) ) |
99 |
98
|
rexlimdva |
|- ( ph -> ( E. e e. ( Poly ` B ) b = ( e ` X ) -> ( E. d e. ( Poly ` B ) c = ( d ` X ) -> E. p e. ( Poly ` B ) ( b + c ) = ( p ` X ) ) ) ) |
100 |
99
|
3imp |
|- ( ( ph /\ E. e e. ( Poly ` B ) b = ( e ` X ) /\ E. d e. ( Poly ` B ) c = ( d ` X ) ) -> E. p e. ( Poly ` B ) ( b + c ) = ( p ` X ) ) |
101 |
49 57 65 100
|
syl3anb |
|- ( ( ph /\ b e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } /\ c e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } ) -> E. p e. ( Poly ` B ) ( b + c ) = ( p ` X ) ) |
102 |
|
ovex |
|- ( b + c ) e. _V |
103 |
|
eqeq1 |
|- ( a = ( b + c ) -> ( a = ( p ` X ) <-> ( b + c ) = ( p ` X ) ) ) |
104 |
103
|
rexbidv |
|- ( a = ( b + c ) -> ( E. p e. ( Poly ` B ) a = ( p ` X ) <-> E. p e. ( Poly ` B ) ( b + c ) = ( p ` X ) ) ) |
105 |
102 104
|
elab |
|- ( ( b + c ) e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } <-> E. p e. ( Poly ` B ) ( b + c ) = ( p ` X ) ) |
106 |
101 105
|
sylibr |
|- ( ( ph /\ b e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } /\ c e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } ) -> ( b + c ) e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } ) |
107 |
|
ax-1cn |
|- 1 e. CC |
108 |
|
cnfldneg |
|- ( 1 e. CC -> ( ( invg ` CCfld ) ` 1 ) = -u 1 ) |
109 |
107 108
|
mp1i |
|- ( ph -> ( ( invg ` CCfld ) ` 1 ) = -u 1 ) |
110 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
111 |
110
|
subrg1cl |
|- ( B e. ( SubRing ` CCfld ) -> 1 e. B ) |
112 |
1 111
|
syl |
|- ( ph -> 1 e. B ) |
113 |
|
eqid |
|- ( invg ` CCfld ) = ( invg ` CCfld ) |
114 |
113
|
subginvcl |
|- ( ( B e. ( SubGrp ` CCfld ) /\ 1 e. B ) -> ( ( invg ` CCfld ) ` 1 ) e. B ) |
115 |
45 112 114
|
syl2anc |
|- ( ph -> ( ( invg ` CCfld ) ` 1 ) e. B ) |
116 |
109 115
|
eqeltrrd |
|- ( ph -> -u 1 e. B ) |
117 |
|
plyconst |
|- ( ( B C_ CC /\ -u 1 e. B ) -> ( CC X. { -u 1 } ) e. ( Poly ` B ) ) |
118 |
10 116 117
|
syl2anc |
|- ( ph -> ( CC X. { -u 1 } ) e. ( Poly ` B ) ) |
119 |
118
|
adantr |
|- ( ( ph /\ e e. ( Poly ` B ) ) -> ( CC X. { -u 1 } ) e. ( Poly ` B ) ) |
120 |
|
simpr |
|- ( ( ph /\ e e. ( Poly ` B ) ) -> e e. ( Poly ` B ) ) |
121 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
122 |
121
|
subrgmcl |
|- ( ( B e. ( SubRing ` CCfld ) /\ a e. B /\ b e. B ) -> ( a x. b ) e. B ) |
123 |
122
|
3expb |
|- ( ( B e. ( SubRing ` CCfld ) /\ ( a e. B /\ b e. B ) ) -> ( a x. b ) e. B ) |
124 |
1 123
|
sylan |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a x. b ) e. B ) |
125 |
124
|
adantlr |
|- ( ( ( ph /\ e e. ( Poly ` B ) ) /\ ( a e. B /\ b e. B ) ) -> ( a x. b ) e. B ) |
126 |
119 120 71 125
|
plymul |
|- ( ( ph /\ e e. ( Poly ` B ) ) -> ( ( CC X. { -u 1 } ) oF x. e ) e. ( Poly ` B ) ) |
127 |
|
ffvelrn |
|- ( ( e : CC --> CC /\ X e. CC ) -> ( e ` X ) e. CC ) |
128 |
74 2 127
|
syl2anr |
|- ( ( ph /\ e e. ( Poly ` B ) ) -> ( e ` X ) e. CC ) |
129 |
|
cnfldneg |
|- ( ( e ` X ) e. CC -> ( ( invg ` CCfld ) ` ( e ` X ) ) = -u ( e ` X ) ) |
130 |
128 129
|
syl |
|- ( ( ph /\ e e. ( Poly ` B ) ) -> ( ( invg ` CCfld ) ` ( e ` X ) ) = -u ( e ` X ) ) |
131 |
|
negex |
|- -u 1 e. _V |
132 |
|
fnconstg |
|- ( -u 1 e. _V -> ( CC X. { -u 1 } ) Fn CC ) |
133 |
131 132
|
mp1i |
|- ( ( ph /\ e e. ( Poly ` B ) ) -> ( CC X. { -u 1 } ) Fn CC ) |
134 |
75
|
adantl |
|- ( ( ph /\ e e. ( Poly ` B ) ) -> e Fn CC ) |
135 |
80
|
a1i |
|- ( ( ph /\ e e. ( Poly ` B ) ) -> CC e. _V ) |
136 |
2
|
adantr |
|- ( ( ph /\ e e. ( Poly ` B ) ) -> X e. CC ) |
137 |
|
fnfvof |
|- ( ( ( ( CC X. { -u 1 } ) Fn CC /\ e Fn CC ) /\ ( CC e. _V /\ X e. CC ) ) -> ( ( ( CC X. { -u 1 } ) oF x. e ) ` X ) = ( ( ( CC X. { -u 1 } ) ` X ) x. ( e ` X ) ) ) |
138 |
133 134 135 136 137
|
syl22anc |
|- ( ( ph /\ e e. ( Poly ` B ) ) -> ( ( ( CC X. { -u 1 } ) oF x. e ) ` X ) = ( ( ( CC X. { -u 1 } ) ` X ) x. ( e ` X ) ) ) |
139 |
131
|
fvconst2 |
|- ( X e. CC -> ( ( CC X. { -u 1 } ) ` X ) = -u 1 ) |
140 |
136 139
|
syl |
|- ( ( ph /\ e e. ( Poly ` B ) ) -> ( ( CC X. { -u 1 } ) ` X ) = -u 1 ) |
141 |
140
|
oveq1d |
|- ( ( ph /\ e e. ( Poly ` B ) ) -> ( ( ( CC X. { -u 1 } ) ` X ) x. ( e ` X ) ) = ( -u 1 x. ( e ` X ) ) ) |
142 |
128
|
mulm1d |
|- ( ( ph /\ e e. ( Poly ` B ) ) -> ( -u 1 x. ( e ` X ) ) = -u ( e ` X ) ) |
143 |
138 141 142
|
3eqtrd |
|- ( ( ph /\ e e. ( Poly ` B ) ) -> ( ( ( CC X. { -u 1 } ) oF x. e ) ` X ) = -u ( e ` X ) ) |
144 |
130 143
|
eqtr4d |
|- ( ( ph /\ e e. ( Poly ` B ) ) -> ( ( invg ` CCfld ) ` ( e ` X ) ) = ( ( ( CC X. { -u 1 } ) oF x. e ) ` X ) ) |
145 |
|
fveq1 |
|- ( p = ( ( CC X. { -u 1 } ) oF x. e ) -> ( p ` X ) = ( ( ( CC X. { -u 1 } ) oF x. e ) ` X ) ) |
146 |
145
|
rspceeqv |
|- ( ( ( ( CC X. { -u 1 } ) oF x. e ) e. ( Poly ` B ) /\ ( ( invg ` CCfld ) ` ( e ` X ) ) = ( ( ( CC X. { -u 1 } ) oF x. e ) ` X ) ) -> E. p e. ( Poly ` B ) ( ( invg ` CCfld ) ` ( e ` X ) ) = ( p ` X ) ) |
147 |
126 144 146
|
syl2anc |
|- ( ( ph /\ e e. ( Poly ` B ) ) -> E. p e. ( Poly ` B ) ( ( invg ` CCfld ) ` ( e ` X ) ) = ( p ` X ) ) |
148 |
|
fveqeq2 |
|- ( b = ( e ` X ) -> ( ( ( invg ` CCfld ) ` b ) = ( p ` X ) <-> ( ( invg ` CCfld ) ` ( e ` X ) ) = ( p ` X ) ) ) |
149 |
148
|
rexbidv |
|- ( b = ( e ` X ) -> ( E. p e. ( Poly ` B ) ( ( invg ` CCfld ) ` b ) = ( p ` X ) <-> E. p e. ( Poly ` B ) ( ( invg ` CCfld ) ` ( e ` X ) ) = ( p ` X ) ) ) |
150 |
147 149
|
syl5ibrcom |
|- ( ( ph /\ e e. ( Poly ` B ) ) -> ( b = ( e ` X ) -> E. p e. ( Poly ` B ) ( ( invg ` CCfld ) ` b ) = ( p ` X ) ) ) |
151 |
150
|
rexlimdva |
|- ( ph -> ( E. e e. ( Poly ` B ) b = ( e ` X ) -> E. p e. ( Poly ` B ) ( ( invg ` CCfld ) ` b ) = ( p ` X ) ) ) |
152 |
151
|
imp |
|- ( ( ph /\ E. e e. ( Poly ` B ) b = ( e ` X ) ) -> E. p e. ( Poly ` B ) ( ( invg ` CCfld ) ` b ) = ( p ` X ) ) |
153 |
57 152
|
sylan2b |
|- ( ( ph /\ b e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } ) -> E. p e. ( Poly ` B ) ( ( invg ` CCfld ) ` b ) = ( p ` X ) ) |
154 |
|
fvex |
|- ( ( invg ` CCfld ) ` b ) e. _V |
155 |
|
eqeq1 |
|- ( a = ( ( invg ` CCfld ) ` b ) -> ( a = ( p ` X ) <-> ( ( invg ` CCfld ) ` b ) = ( p ` X ) ) ) |
156 |
155
|
rexbidv |
|- ( a = ( ( invg ` CCfld ) ` b ) -> ( E. p e. ( Poly ` B ) a = ( p ` X ) <-> E. p e. ( Poly ` B ) ( ( invg ` CCfld ) ` b ) = ( p ` X ) ) ) |
157 |
154 156
|
elab |
|- ( ( ( invg ` CCfld ) ` b ) e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } <-> E. p e. ( Poly ` B ) ( ( invg ` CCfld ) ` b ) = ( p ` X ) ) |
158 |
153 157
|
sylibr |
|- ( ( ph /\ b e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } ) -> ( ( invg ` CCfld ) ` b ) e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } ) |
159 |
110
|
a1i |
|- ( ph -> 1 = ( 1r ` CCfld ) ) |
160 |
121
|
a1i |
|- ( ph -> x. = ( .r ` CCfld ) ) |
161 |
43 112
|
sseldd |
|- ( ph -> 1 e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } ) |
162 |
125
|
adantlr |
|- ( ( ( ( ph /\ e e. ( Poly ` B ) ) /\ d e. ( Poly ` B ) ) /\ ( a e. B /\ b e. B ) ) -> ( a x. b ) e. B ) |
163 |
66 67 72 162
|
plymul |
|- ( ( ( ph /\ e e. ( Poly ` B ) ) /\ d e. ( Poly ` B ) ) -> ( e oF x. d ) e. ( Poly ` B ) ) |
164 |
|
fnfvof |
|- ( ( ( e Fn CC /\ d Fn CC ) /\ ( CC e. _V /\ X e. CC ) ) -> ( ( e oF x. d ) ` X ) = ( ( e ` X ) x. ( d ` X ) ) ) |
165 |
76 79 81 82 164
|
syl22anc |
|- ( ( ( ph /\ e e. ( Poly ` B ) ) /\ d e. ( Poly ` B ) ) -> ( ( e oF x. d ) ` X ) = ( ( e ` X ) x. ( d ` X ) ) ) |
166 |
165
|
eqcomd |
|- ( ( ( ph /\ e e. ( Poly ` B ) ) /\ d e. ( Poly ` B ) ) -> ( ( e ` X ) x. ( d ` X ) ) = ( ( e oF x. d ) ` X ) ) |
167 |
|
fveq1 |
|- ( p = ( e oF x. d ) -> ( p ` X ) = ( ( e oF x. d ) ` X ) ) |
168 |
167
|
rspceeqv |
|- ( ( ( e oF x. d ) e. ( Poly ` B ) /\ ( ( e ` X ) x. ( d ` X ) ) = ( ( e oF x. d ) ` X ) ) -> E. p e. ( Poly ` B ) ( ( e ` X ) x. ( d ` X ) ) = ( p ` X ) ) |
169 |
163 166 168
|
syl2anc |
|- ( ( ( ph /\ e e. ( Poly ` B ) ) /\ d e. ( Poly ` B ) ) -> E. p e. ( Poly ` B ) ( ( e ` X ) x. ( d ` X ) ) = ( p ` X ) ) |
170 |
|
oveq2 |
|- ( c = ( d ` X ) -> ( ( e ` X ) x. c ) = ( ( e ` X ) x. ( d ` X ) ) ) |
171 |
170
|
eqeq1d |
|- ( c = ( d ` X ) -> ( ( ( e ` X ) x. c ) = ( p ` X ) <-> ( ( e ` X ) x. ( d ` X ) ) = ( p ` X ) ) ) |
172 |
171
|
rexbidv |
|- ( c = ( d ` X ) -> ( E. p e. ( Poly ` B ) ( ( e ` X ) x. c ) = ( p ` X ) <-> E. p e. ( Poly ` B ) ( ( e ` X ) x. ( d ` X ) ) = ( p ` X ) ) ) |
173 |
169 172
|
syl5ibrcom |
|- ( ( ( ph /\ e e. ( Poly ` B ) ) /\ d e. ( Poly ` B ) ) -> ( c = ( d ` X ) -> E. p e. ( Poly ` B ) ( ( e ` X ) x. c ) = ( p ` X ) ) ) |
174 |
173
|
rexlimdva |
|- ( ( ph /\ e e. ( Poly ` B ) ) -> ( E. d e. ( Poly ` B ) c = ( d ` X ) -> E. p e. ( Poly ` B ) ( ( e ` X ) x. c ) = ( p ` X ) ) ) |
175 |
|
oveq1 |
|- ( b = ( e ` X ) -> ( b x. c ) = ( ( e ` X ) x. c ) ) |
176 |
175
|
eqeq1d |
|- ( b = ( e ` X ) -> ( ( b x. c ) = ( p ` X ) <-> ( ( e ` X ) x. c ) = ( p ` X ) ) ) |
177 |
176
|
rexbidv |
|- ( b = ( e ` X ) -> ( E. p e. ( Poly ` B ) ( b x. c ) = ( p ` X ) <-> E. p e. ( Poly ` B ) ( ( e ` X ) x. c ) = ( p ` X ) ) ) |
178 |
177
|
imbi2d |
|- ( b = ( e ` X ) -> ( ( E. d e. ( Poly ` B ) c = ( d ` X ) -> E. p e. ( Poly ` B ) ( b x. c ) = ( p ` X ) ) <-> ( E. d e. ( Poly ` B ) c = ( d ` X ) -> E. p e. ( Poly ` B ) ( ( e ` X ) x. c ) = ( p ` X ) ) ) ) |
179 |
174 178
|
syl5ibrcom |
|- ( ( ph /\ e e. ( Poly ` B ) ) -> ( b = ( e ` X ) -> ( E. d e. ( Poly ` B ) c = ( d ` X ) -> E. p e. ( Poly ` B ) ( b x. c ) = ( p ` X ) ) ) ) |
180 |
179
|
rexlimdva |
|- ( ph -> ( E. e e. ( Poly ` B ) b = ( e ` X ) -> ( E. d e. ( Poly ` B ) c = ( d ` X ) -> E. p e. ( Poly ` B ) ( b x. c ) = ( p ` X ) ) ) ) |
181 |
180
|
3imp |
|- ( ( ph /\ E. e e. ( Poly ` B ) b = ( e ` X ) /\ E. d e. ( Poly ` B ) c = ( d ` X ) ) -> E. p e. ( Poly ` B ) ( b x. c ) = ( p ` X ) ) |
182 |
49 57 65 181
|
syl3anb |
|- ( ( ph /\ b e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } /\ c e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } ) -> E. p e. ( Poly ` B ) ( b x. c ) = ( p ` X ) ) |
183 |
|
ovex |
|- ( b x. c ) e. _V |
184 |
|
eqeq1 |
|- ( a = ( b x. c ) -> ( a = ( p ` X ) <-> ( b x. c ) = ( p ` X ) ) ) |
185 |
184
|
rexbidv |
|- ( a = ( b x. c ) -> ( E. p e. ( Poly ` B ) a = ( p ` X ) <-> E. p e. ( Poly ` B ) ( b x. c ) = ( p ` X ) ) ) |
186 |
183 185
|
elab |
|- ( ( b x. c ) e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } <-> E. p e. ( Poly ` B ) ( b x. c ) = ( p ` X ) ) |
187 |
182 186
|
sylibr |
|- ( ( ph /\ b e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } /\ c e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } ) -> ( b x. c ) e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } ) |
188 |
15 17 19 29 48 106 158 159 160 161 187 6
|
issubrngd2 |
|- ( ph -> { a | E. p e. ( Poly ` B ) a = ( p ` X ) } e. ( SubRing ` CCfld ) ) |
189 |
|
plyid |
|- ( ( B C_ CC /\ 1 e. B ) -> Xp e. ( Poly ` B ) ) |
190 |
10 112 189
|
syl2anc |
|- ( ph -> Xp e. ( Poly ` B ) ) |
191 |
|
df-idp |
|- Xp = ( _I |` CC ) |
192 |
191
|
fveq1i |
|- ( Xp ` X ) = ( ( _I |` CC ) ` X ) |
193 |
|
fvresi |
|- ( X e. CC -> ( ( _I |` CC ) ` X ) = X ) |
194 |
2 193
|
syl |
|- ( ph -> ( ( _I |` CC ) ` X ) = X ) |
195 |
192 194
|
eqtr2id |
|- ( ph -> X = ( Xp ` X ) ) |
196 |
|
fveq1 |
|- ( p = Xp -> ( p ` X ) = ( Xp ` X ) ) |
197 |
196
|
rspceeqv |
|- ( ( Xp e. ( Poly ` B ) /\ X = ( Xp ` X ) ) -> E. p e. ( Poly ` B ) X = ( p ` X ) ) |
198 |
190 195 197
|
syl2anc |
|- ( ph -> E. p e. ( Poly ` B ) X = ( p ` X ) ) |
199 |
|
eqeq1 |
|- ( a = X -> ( a = ( p ` X ) <-> X = ( p ` X ) ) ) |
200 |
199
|
rexbidv |
|- ( a = X -> ( E. p e. ( Poly ` B ) a = ( p ` X ) <-> E. p e. ( Poly ` B ) X = ( p ` X ) ) ) |
201 |
2 198 200
|
elabd |
|- ( ph -> X e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } ) |
202 |
201
|
snssd |
|- ( ph -> { X } C_ { a | E. p e. ( Poly ` B ) a = ( p ` X ) } ) |
203 |
43 202
|
unssd |
|- ( ph -> ( B u. { X } ) C_ { a | E. p e. ( Poly ` B ) a = ( p ` X ) } ) |
204 |
6 8 12 13 14 188 203
|
rgspnmin |
|- ( ph -> ( ( RingSpan ` CCfld ) ` ( B u. { X } ) ) C_ { a | E. p e. ( Poly ` B ) a = ( p ` X ) } ) |
205 |
204
|
sseld |
|- ( ph -> ( V e. ( ( RingSpan ` CCfld ) ` ( B u. { X } ) ) -> V e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } ) ) |
206 |
|
fvex |
|- ( p ` X ) e. _V |
207 |
|
eleq1 |
|- ( V = ( p ` X ) -> ( V e. _V <-> ( p ` X ) e. _V ) ) |
208 |
206 207
|
mpbiri |
|- ( V = ( p ` X ) -> V e. _V ) |
209 |
208
|
rexlimivw |
|- ( E. p e. ( Poly ` B ) V = ( p ` X ) -> V e. _V ) |
210 |
|
eqeq1 |
|- ( a = V -> ( a = ( p ` X ) <-> V = ( p ` X ) ) ) |
211 |
210
|
rexbidv |
|- ( a = V -> ( E. p e. ( Poly ` B ) a = ( p ` X ) <-> E. p e. ( Poly ` B ) V = ( p ` X ) ) ) |
212 |
209 211
|
elab3 |
|- ( V e. { a | E. p e. ( Poly ` B ) a = ( p ` X ) } <-> E. p e. ( Poly ` B ) V = ( p ` X ) ) |
213 |
205 212
|
syl6ib |
|- ( ph -> ( V e. ( ( RingSpan ` CCfld ) ` ( B u. { X } ) ) -> E. p e. ( Poly ` B ) V = ( p ` X ) ) ) |
214 |
6 8 12 13 14
|
rgspncl |
|- ( ph -> ( ( RingSpan ` CCfld ) ` ( B u. { X } ) ) e. ( SubRing ` CCfld ) ) |
215 |
214
|
adantr |
|- ( ( ph /\ p e. ( Poly ` B ) ) -> ( ( RingSpan ` CCfld ) ` ( B u. { X } ) ) e. ( SubRing ` CCfld ) ) |
216 |
|
simpr |
|- ( ( ph /\ p e. ( Poly ` B ) ) -> p e. ( Poly ` B ) ) |
217 |
6 8 12 13 14
|
rgspnssid |
|- ( ph -> ( B u. { X } ) C_ ( ( RingSpan ` CCfld ) ` ( B u. { X } ) ) ) |
218 |
217
|
unssbd |
|- ( ph -> { X } C_ ( ( RingSpan ` CCfld ) ` ( B u. { X } ) ) ) |
219 |
|
snidg |
|- ( X e. CC -> X e. { X } ) |
220 |
2 219
|
syl |
|- ( ph -> X e. { X } ) |
221 |
218 220
|
sseldd |
|- ( ph -> X e. ( ( RingSpan ` CCfld ) ` ( B u. { X } ) ) ) |
222 |
221
|
adantr |
|- ( ( ph /\ p e. ( Poly ` B ) ) -> X e. ( ( RingSpan ` CCfld ) ` ( B u. { X } ) ) ) |
223 |
217
|
unssad |
|- ( ph -> B C_ ( ( RingSpan ` CCfld ) ` ( B u. { X } ) ) ) |
224 |
223
|
adantr |
|- ( ( ph /\ p e. ( Poly ` B ) ) -> B C_ ( ( RingSpan ` CCfld ) ` ( B u. { X } ) ) ) |
225 |
215 216 222 224
|
cnsrplycl |
|- ( ( ph /\ p e. ( Poly ` B ) ) -> ( p ` X ) e. ( ( RingSpan ` CCfld ) ` ( B u. { X } ) ) ) |
226 |
|
eleq1 |
|- ( V = ( p ` X ) -> ( V e. ( ( RingSpan ` CCfld ) ` ( B u. { X } ) ) <-> ( p ` X ) e. ( ( RingSpan ` CCfld ) ` ( B u. { X } ) ) ) ) |
227 |
225 226
|
syl5ibrcom |
|- ( ( ph /\ p e. ( Poly ` B ) ) -> ( V = ( p ` X ) -> V e. ( ( RingSpan ` CCfld ) ` ( B u. { X } ) ) ) ) |
228 |
227
|
rexlimdva |
|- ( ph -> ( E. p e. ( Poly ` B ) V = ( p ` X ) -> V e. ( ( RingSpan ` CCfld ) ` ( B u. { X } ) ) ) ) |
229 |
213 228
|
impbid |
|- ( ph -> ( V e. ( ( RingSpan ` CCfld ) ` ( B u. { X } ) ) <-> E. p e. ( Poly ` B ) V = ( p ` X ) ) ) |
230 |
4 229
|
bitrd |
|- ( ph -> ( V e. S <-> E. p e. ( Poly ` B ) V = ( p ` X ) ) ) |