| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flcidc.f |
|- ( ph -> F = ( j e. S |-> if ( j = K , 1 , 0 ) ) ) |
| 2 |
|
flcidc.s |
|- ( ph -> S e. Fin ) |
| 3 |
|
flcidc.k |
|- ( ph -> K e. S ) |
| 4 |
|
flcidc.b |
|- ( ( ph /\ i e. S ) -> B e. CC ) |
| 5 |
1
|
fveq1d |
|- ( ph -> ( F ` i ) = ( ( j e. S |-> if ( j = K , 1 , 0 ) ) ` i ) ) |
| 6 |
5
|
adantr |
|- ( ( ph /\ i e. { K } ) -> ( F ` i ) = ( ( j e. S |-> if ( j = K , 1 , 0 ) ) ` i ) ) |
| 7 |
3
|
snssd |
|- ( ph -> { K } C_ S ) |
| 8 |
7
|
sselda |
|- ( ( ph /\ i e. { K } ) -> i e. S ) |
| 9 |
|
eqeq1 |
|- ( j = i -> ( j = K <-> i = K ) ) |
| 10 |
9
|
ifbid |
|- ( j = i -> if ( j = K , 1 , 0 ) = if ( i = K , 1 , 0 ) ) |
| 11 |
|
eqid |
|- ( j e. S |-> if ( j = K , 1 , 0 ) ) = ( j e. S |-> if ( j = K , 1 , 0 ) ) |
| 12 |
|
1ex |
|- 1 e. _V |
| 13 |
|
c0ex |
|- 0 e. _V |
| 14 |
12 13
|
ifex |
|- if ( i = K , 1 , 0 ) e. _V |
| 15 |
10 11 14
|
fvmpt |
|- ( i e. S -> ( ( j e. S |-> if ( j = K , 1 , 0 ) ) ` i ) = if ( i = K , 1 , 0 ) ) |
| 16 |
8 15
|
syl |
|- ( ( ph /\ i e. { K } ) -> ( ( j e. S |-> if ( j = K , 1 , 0 ) ) ` i ) = if ( i = K , 1 , 0 ) ) |
| 17 |
6 16
|
eqtrd |
|- ( ( ph /\ i e. { K } ) -> ( F ` i ) = if ( i = K , 1 , 0 ) ) |
| 18 |
|
elsni |
|- ( i e. { K } -> i = K ) |
| 19 |
18
|
iftrued |
|- ( i e. { K } -> if ( i = K , 1 , 0 ) = 1 ) |
| 20 |
19
|
adantl |
|- ( ( ph /\ i e. { K } ) -> if ( i = K , 1 , 0 ) = 1 ) |
| 21 |
17 20
|
eqtrd |
|- ( ( ph /\ i e. { K } ) -> ( F ` i ) = 1 ) |
| 22 |
21
|
oveq1d |
|- ( ( ph /\ i e. { K } ) -> ( ( F ` i ) x. B ) = ( 1 x. B ) ) |
| 23 |
8 4
|
syldan |
|- ( ( ph /\ i e. { K } ) -> B e. CC ) |
| 24 |
23
|
mullidd |
|- ( ( ph /\ i e. { K } ) -> ( 1 x. B ) = B ) |
| 25 |
22 24
|
eqtrd |
|- ( ( ph /\ i e. { K } ) -> ( ( F ` i ) x. B ) = B ) |
| 26 |
25
|
sumeq2dv |
|- ( ph -> sum_ i e. { K } ( ( F ` i ) x. B ) = sum_ i e. { K } B ) |
| 27 |
|
ax-1cn |
|- 1 e. CC |
| 28 |
|
0cn |
|- 0 e. CC |
| 29 |
27 28
|
ifcli |
|- if ( i = K , 1 , 0 ) e. CC |
| 30 |
17 29
|
eqeltrdi |
|- ( ( ph /\ i e. { K } ) -> ( F ` i ) e. CC ) |
| 31 |
30 23
|
mulcld |
|- ( ( ph /\ i e. { K } ) -> ( ( F ` i ) x. B ) e. CC ) |
| 32 |
5
|
adantr |
|- ( ( ph /\ i e. ( S \ { K } ) ) -> ( F ` i ) = ( ( j e. S |-> if ( j = K , 1 , 0 ) ) ` i ) ) |
| 33 |
|
eldifi |
|- ( i e. ( S \ { K } ) -> i e. S ) |
| 34 |
33
|
adantl |
|- ( ( ph /\ i e. ( S \ { K } ) ) -> i e. S ) |
| 35 |
34 15
|
syl |
|- ( ( ph /\ i e. ( S \ { K } ) ) -> ( ( j e. S |-> if ( j = K , 1 , 0 ) ) ` i ) = if ( i = K , 1 , 0 ) ) |
| 36 |
32 35
|
eqtrd |
|- ( ( ph /\ i e. ( S \ { K } ) ) -> ( F ` i ) = if ( i = K , 1 , 0 ) ) |
| 37 |
|
eldifn |
|- ( i e. ( S \ { K } ) -> -. i e. { K } ) |
| 38 |
|
velsn |
|- ( i e. { K } <-> i = K ) |
| 39 |
37 38
|
sylnib |
|- ( i e. ( S \ { K } ) -> -. i = K ) |
| 40 |
39
|
iffalsed |
|- ( i e. ( S \ { K } ) -> if ( i = K , 1 , 0 ) = 0 ) |
| 41 |
40
|
adantl |
|- ( ( ph /\ i e. ( S \ { K } ) ) -> if ( i = K , 1 , 0 ) = 0 ) |
| 42 |
36 41
|
eqtrd |
|- ( ( ph /\ i e. ( S \ { K } ) ) -> ( F ` i ) = 0 ) |
| 43 |
42
|
oveq1d |
|- ( ( ph /\ i e. ( S \ { K } ) ) -> ( ( F ` i ) x. B ) = ( 0 x. B ) ) |
| 44 |
34 4
|
syldan |
|- ( ( ph /\ i e. ( S \ { K } ) ) -> B e. CC ) |
| 45 |
44
|
mul02d |
|- ( ( ph /\ i e. ( S \ { K } ) ) -> ( 0 x. B ) = 0 ) |
| 46 |
43 45
|
eqtrd |
|- ( ( ph /\ i e. ( S \ { K } ) ) -> ( ( F ` i ) x. B ) = 0 ) |
| 47 |
7 31 46 2
|
fsumss |
|- ( ph -> sum_ i e. { K } ( ( F ` i ) x. B ) = sum_ i e. S ( ( F ` i ) x. B ) ) |
| 48 |
|
eleq1 |
|- ( j = K -> ( j e. S <-> K e. S ) ) |
| 49 |
48
|
anbi2d |
|- ( j = K -> ( ( ph /\ j e. S ) <-> ( ph /\ K e. S ) ) ) |
| 50 |
|
csbeq1 |
|- ( j = K -> [_ j / i ]_ B = [_ K / i ]_ B ) |
| 51 |
50
|
eleq1d |
|- ( j = K -> ( [_ j / i ]_ B e. CC <-> [_ K / i ]_ B e. CC ) ) |
| 52 |
49 51
|
imbi12d |
|- ( j = K -> ( ( ( ph /\ j e. S ) -> [_ j / i ]_ B e. CC ) <-> ( ( ph /\ K e. S ) -> [_ K / i ]_ B e. CC ) ) ) |
| 53 |
|
nfv |
|- F/ i ( ph /\ j e. S ) |
| 54 |
|
nfcsb1v |
|- F/_ i [_ j / i ]_ B |
| 55 |
54
|
nfel1 |
|- F/ i [_ j / i ]_ B e. CC |
| 56 |
53 55
|
nfim |
|- F/ i ( ( ph /\ j e. S ) -> [_ j / i ]_ B e. CC ) |
| 57 |
|
eleq1 |
|- ( i = j -> ( i e. S <-> j e. S ) ) |
| 58 |
57
|
anbi2d |
|- ( i = j -> ( ( ph /\ i e. S ) <-> ( ph /\ j e. S ) ) ) |
| 59 |
|
csbeq1a |
|- ( i = j -> B = [_ j / i ]_ B ) |
| 60 |
59
|
eleq1d |
|- ( i = j -> ( B e. CC <-> [_ j / i ]_ B e. CC ) ) |
| 61 |
58 60
|
imbi12d |
|- ( i = j -> ( ( ( ph /\ i e. S ) -> B e. CC ) <-> ( ( ph /\ j e. S ) -> [_ j / i ]_ B e. CC ) ) ) |
| 62 |
56 61 4
|
chvarfv |
|- ( ( ph /\ j e. S ) -> [_ j / i ]_ B e. CC ) |
| 63 |
52 62
|
vtoclg |
|- ( K e. S -> ( ( ph /\ K e. S ) -> [_ K / i ]_ B e. CC ) ) |
| 64 |
63
|
anabsi7 |
|- ( ( ph /\ K e. S ) -> [_ K / i ]_ B e. CC ) |
| 65 |
3 64
|
mpdan |
|- ( ph -> [_ K / i ]_ B e. CC ) |
| 66 |
|
sumsns |
|- ( ( K e. S /\ [_ K / i ]_ B e. CC ) -> sum_ i e. { K } B = [_ K / i ]_ B ) |
| 67 |
3 65 66
|
syl2anc |
|- ( ph -> sum_ i e. { K } B = [_ K / i ]_ B ) |
| 68 |
26 47 67
|
3eqtr3d |
|- ( ph -> sum_ i e. S ( ( F ` i ) x. B ) = [_ K / i ]_ B ) |