Step |
Hyp |
Ref |
Expression |
1 |
|
flcidc.f |
|- ( ph -> F = ( j e. S |-> if ( j = K , 1 , 0 ) ) ) |
2 |
|
flcidc.s |
|- ( ph -> S e. Fin ) |
3 |
|
flcidc.k |
|- ( ph -> K e. S ) |
4 |
|
flcidc.b |
|- ( ( ph /\ i e. S ) -> B e. CC ) |
5 |
1
|
fveq1d |
|- ( ph -> ( F ` i ) = ( ( j e. S |-> if ( j = K , 1 , 0 ) ) ` i ) ) |
6 |
5
|
adantr |
|- ( ( ph /\ i e. { K } ) -> ( F ` i ) = ( ( j e. S |-> if ( j = K , 1 , 0 ) ) ` i ) ) |
7 |
3
|
snssd |
|- ( ph -> { K } C_ S ) |
8 |
7
|
sselda |
|- ( ( ph /\ i e. { K } ) -> i e. S ) |
9 |
|
eqeq1 |
|- ( j = i -> ( j = K <-> i = K ) ) |
10 |
9
|
ifbid |
|- ( j = i -> if ( j = K , 1 , 0 ) = if ( i = K , 1 , 0 ) ) |
11 |
|
eqid |
|- ( j e. S |-> if ( j = K , 1 , 0 ) ) = ( j e. S |-> if ( j = K , 1 , 0 ) ) |
12 |
|
1ex |
|- 1 e. _V |
13 |
|
c0ex |
|- 0 e. _V |
14 |
12 13
|
ifex |
|- if ( i = K , 1 , 0 ) e. _V |
15 |
10 11 14
|
fvmpt |
|- ( i e. S -> ( ( j e. S |-> if ( j = K , 1 , 0 ) ) ` i ) = if ( i = K , 1 , 0 ) ) |
16 |
8 15
|
syl |
|- ( ( ph /\ i e. { K } ) -> ( ( j e. S |-> if ( j = K , 1 , 0 ) ) ` i ) = if ( i = K , 1 , 0 ) ) |
17 |
6 16
|
eqtrd |
|- ( ( ph /\ i e. { K } ) -> ( F ` i ) = if ( i = K , 1 , 0 ) ) |
18 |
|
elsni |
|- ( i e. { K } -> i = K ) |
19 |
18
|
iftrued |
|- ( i e. { K } -> if ( i = K , 1 , 0 ) = 1 ) |
20 |
19
|
adantl |
|- ( ( ph /\ i e. { K } ) -> if ( i = K , 1 , 0 ) = 1 ) |
21 |
17 20
|
eqtrd |
|- ( ( ph /\ i e. { K } ) -> ( F ` i ) = 1 ) |
22 |
21
|
oveq1d |
|- ( ( ph /\ i e. { K } ) -> ( ( F ` i ) x. B ) = ( 1 x. B ) ) |
23 |
8 4
|
syldan |
|- ( ( ph /\ i e. { K } ) -> B e. CC ) |
24 |
23
|
mulid2d |
|- ( ( ph /\ i e. { K } ) -> ( 1 x. B ) = B ) |
25 |
22 24
|
eqtrd |
|- ( ( ph /\ i e. { K } ) -> ( ( F ` i ) x. B ) = B ) |
26 |
25
|
sumeq2dv |
|- ( ph -> sum_ i e. { K } ( ( F ` i ) x. B ) = sum_ i e. { K } B ) |
27 |
|
ax-1cn |
|- 1 e. CC |
28 |
|
0cn |
|- 0 e. CC |
29 |
27 28
|
ifcli |
|- if ( i = K , 1 , 0 ) e. CC |
30 |
17 29
|
eqeltrdi |
|- ( ( ph /\ i e. { K } ) -> ( F ` i ) e. CC ) |
31 |
30 23
|
mulcld |
|- ( ( ph /\ i e. { K } ) -> ( ( F ` i ) x. B ) e. CC ) |
32 |
5
|
adantr |
|- ( ( ph /\ i e. ( S \ { K } ) ) -> ( F ` i ) = ( ( j e. S |-> if ( j = K , 1 , 0 ) ) ` i ) ) |
33 |
|
eldifi |
|- ( i e. ( S \ { K } ) -> i e. S ) |
34 |
33
|
adantl |
|- ( ( ph /\ i e. ( S \ { K } ) ) -> i e. S ) |
35 |
34 15
|
syl |
|- ( ( ph /\ i e. ( S \ { K } ) ) -> ( ( j e. S |-> if ( j = K , 1 , 0 ) ) ` i ) = if ( i = K , 1 , 0 ) ) |
36 |
32 35
|
eqtrd |
|- ( ( ph /\ i e. ( S \ { K } ) ) -> ( F ` i ) = if ( i = K , 1 , 0 ) ) |
37 |
|
eldifn |
|- ( i e. ( S \ { K } ) -> -. i e. { K } ) |
38 |
|
velsn |
|- ( i e. { K } <-> i = K ) |
39 |
37 38
|
sylnib |
|- ( i e. ( S \ { K } ) -> -. i = K ) |
40 |
39
|
iffalsed |
|- ( i e. ( S \ { K } ) -> if ( i = K , 1 , 0 ) = 0 ) |
41 |
40
|
adantl |
|- ( ( ph /\ i e. ( S \ { K } ) ) -> if ( i = K , 1 , 0 ) = 0 ) |
42 |
36 41
|
eqtrd |
|- ( ( ph /\ i e. ( S \ { K } ) ) -> ( F ` i ) = 0 ) |
43 |
42
|
oveq1d |
|- ( ( ph /\ i e. ( S \ { K } ) ) -> ( ( F ` i ) x. B ) = ( 0 x. B ) ) |
44 |
34 4
|
syldan |
|- ( ( ph /\ i e. ( S \ { K } ) ) -> B e. CC ) |
45 |
44
|
mul02d |
|- ( ( ph /\ i e. ( S \ { K } ) ) -> ( 0 x. B ) = 0 ) |
46 |
43 45
|
eqtrd |
|- ( ( ph /\ i e. ( S \ { K } ) ) -> ( ( F ` i ) x. B ) = 0 ) |
47 |
7 31 46 2
|
fsumss |
|- ( ph -> sum_ i e. { K } ( ( F ` i ) x. B ) = sum_ i e. S ( ( F ` i ) x. B ) ) |
48 |
|
eleq1 |
|- ( j = K -> ( j e. S <-> K e. S ) ) |
49 |
48
|
anbi2d |
|- ( j = K -> ( ( ph /\ j e. S ) <-> ( ph /\ K e. S ) ) ) |
50 |
|
csbeq1 |
|- ( j = K -> [_ j / i ]_ B = [_ K / i ]_ B ) |
51 |
50
|
eleq1d |
|- ( j = K -> ( [_ j / i ]_ B e. CC <-> [_ K / i ]_ B e. CC ) ) |
52 |
49 51
|
imbi12d |
|- ( j = K -> ( ( ( ph /\ j e. S ) -> [_ j / i ]_ B e. CC ) <-> ( ( ph /\ K e. S ) -> [_ K / i ]_ B e. CC ) ) ) |
53 |
|
nfv |
|- F/ i ( ph /\ j e. S ) |
54 |
|
nfcsb1v |
|- F/_ i [_ j / i ]_ B |
55 |
54
|
nfel1 |
|- F/ i [_ j / i ]_ B e. CC |
56 |
53 55
|
nfim |
|- F/ i ( ( ph /\ j e. S ) -> [_ j / i ]_ B e. CC ) |
57 |
|
eleq1 |
|- ( i = j -> ( i e. S <-> j e. S ) ) |
58 |
57
|
anbi2d |
|- ( i = j -> ( ( ph /\ i e. S ) <-> ( ph /\ j e. S ) ) ) |
59 |
|
csbeq1a |
|- ( i = j -> B = [_ j / i ]_ B ) |
60 |
59
|
eleq1d |
|- ( i = j -> ( B e. CC <-> [_ j / i ]_ B e. CC ) ) |
61 |
58 60
|
imbi12d |
|- ( i = j -> ( ( ( ph /\ i e. S ) -> B e. CC ) <-> ( ( ph /\ j e. S ) -> [_ j / i ]_ B e. CC ) ) ) |
62 |
56 61 4
|
chvarfv |
|- ( ( ph /\ j e. S ) -> [_ j / i ]_ B e. CC ) |
63 |
52 62
|
vtoclg |
|- ( K e. S -> ( ( ph /\ K e. S ) -> [_ K / i ]_ B e. CC ) ) |
64 |
63
|
anabsi7 |
|- ( ( ph /\ K e. S ) -> [_ K / i ]_ B e. CC ) |
65 |
3 64
|
mpdan |
|- ( ph -> [_ K / i ]_ B e. CC ) |
66 |
|
sumsns |
|- ( ( K e. S /\ [_ K / i ]_ B e. CC ) -> sum_ i e. { K } B = [_ K / i ]_ B ) |
67 |
3 65 66
|
syl2anc |
|- ( ph -> sum_ i e. { K } B = [_ K / i ]_ B ) |
68 |
26 47 67
|
3eqtr3d |
|- ( ph -> sum_ i e. S ( ( F ` i ) x. B ) = [_ K / i ]_ B ) |