Step |
Hyp |
Ref |
Expression |
1 |
|
flcidc.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑗 ∈ 𝑆 ↦ if ( 𝑗 = 𝐾 , 1 , 0 ) ) ) |
2 |
|
flcidc.s |
⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
3 |
|
flcidc.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑆 ) |
4 |
|
flcidc.b |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑆 ) → 𝐵 ∈ ℂ ) |
5 |
1
|
fveq1d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑖 ) = ( ( 𝑗 ∈ 𝑆 ↦ if ( 𝑗 = 𝐾 , 1 , 0 ) ) ‘ 𝑖 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → ( 𝐹 ‘ 𝑖 ) = ( ( 𝑗 ∈ 𝑆 ↦ if ( 𝑗 = 𝐾 , 1 , 0 ) ) ‘ 𝑖 ) ) |
7 |
3
|
snssd |
⊢ ( 𝜑 → { 𝐾 } ⊆ 𝑆 ) |
8 |
7
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → 𝑖 ∈ 𝑆 ) |
9 |
|
eqeq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 = 𝐾 ↔ 𝑖 = 𝐾 ) ) |
10 |
9
|
ifbid |
⊢ ( 𝑗 = 𝑖 → if ( 𝑗 = 𝐾 , 1 , 0 ) = if ( 𝑖 = 𝐾 , 1 , 0 ) ) |
11 |
|
eqid |
⊢ ( 𝑗 ∈ 𝑆 ↦ if ( 𝑗 = 𝐾 , 1 , 0 ) ) = ( 𝑗 ∈ 𝑆 ↦ if ( 𝑗 = 𝐾 , 1 , 0 ) ) |
12 |
|
1ex |
⊢ 1 ∈ V |
13 |
|
c0ex |
⊢ 0 ∈ V |
14 |
12 13
|
ifex |
⊢ if ( 𝑖 = 𝐾 , 1 , 0 ) ∈ V |
15 |
10 11 14
|
fvmpt |
⊢ ( 𝑖 ∈ 𝑆 → ( ( 𝑗 ∈ 𝑆 ↦ if ( 𝑗 = 𝐾 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝐾 , 1 , 0 ) ) |
16 |
8 15
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → ( ( 𝑗 ∈ 𝑆 ↦ if ( 𝑗 = 𝐾 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝐾 , 1 , 0 ) ) |
17 |
6 16
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → ( 𝐹 ‘ 𝑖 ) = if ( 𝑖 = 𝐾 , 1 , 0 ) ) |
18 |
|
elsni |
⊢ ( 𝑖 ∈ { 𝐾 } → 𝑖 = 𝐾 ) |
19 |
18
|
iftrued |
⊢ ( 𝑖 ∈ { 𝐾 } → if ( 𝑖 = 𝐾 , 1 , 0 ) = 1 ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → if ( 𝑖 = 𝐾 , 1 , 0 ) = 1 ) |
21 |
17 20
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → ( 𝐹 ‘ 𝑖 ) = 1 ) |
22 |
21
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → ( ( 𝐹 ‘ 𝑖 ) · 𝐵 ) = ( 1 · 𝐵 ) ) |
23 |
8 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → 𝐵 ∈ ℂ ) |
24 |
23
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → ( 1 · 𝐵 ) = 𝐵 ) |
25 |
22 24
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → ( ( 𝐹 ‘ 𝑖 ) · 𝐵 ) = 𝐵 ) |
26 |
25
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑖 ∈ { 𝐾 } ( ( 𝐹 ‘ 𝑖 ) · 𝐵 ) = Σ 𝑖 ∈ { 𝐾 } 𝐵 ) |
27 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
28 |
|
0cn |
⊢ 0 ∈ ℂ |
29 |
27 28
|
ifcli |
⊢ if ( 𝑖 = 𝐾 , 1 , 0 ) ∈ ℂ |
30 |
17 29
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → ( 𝐹 ‘ 𝑖 ) ∈ ℂ ) |
31 |
30 23
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → ( ( 𝐹 ‘ 𝑖 ) · 𝐵 ) ∈ ℂ ) |
32 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) ) → ( 𝐹 ‘ 𝑖 ) = ( ( 𝑗 ∈ 𝑆 ↦ if ( 𝑗 = 𝐾 , 1 , 0 ) ) ‘ 𝑖 ) ) |
33 |
|
eldifi |
⊢ ( 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) → 𝑖 ∈ 𝑆 ) |
34 |
33
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) ) → 𝑖 ∈ 𝑆 ) |
35 |
34 15
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) ) → ( ( 𝑗 ∈ 𝑆 ↦ if ( 𝑗 = 𝐾 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝐾 , 1 , 0 ) ) |
36 |
32 35
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) ) → ( 𝐹 ‘ 𝑖 ) = if ( 𝑖 = 𝐾 , 1 , 0 ) ) |
37 |
|
eldifn |
⊢ ( 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) → ¬ 𝑖 ∈ { 𝐾 } ) |
38 |
|
velsn |
⊢ ( 𝑖 ∈ { 𝐾 } ↔ 𝑖 = 𝐾 ) |
39 |
37 38
|
sylnib |
⊢ ( 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) → ¬ 𝑖 = 𝐾 ) |
40 |
39
|
iffalsed |
⊢ ( 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) → if ( 𝑖 = 𝐾 , 1 , 0 ) = 0 ) |
41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) ) → if ( 𝑖 = 𝐾 , 1 , 0 ) = 0 ) |
42 |
36 41
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) ) → ( 𝐹 ‘ 𝑖 ) = 0 ) |
43 |
42
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) ) → ( ( 𝐹 ‘ 𝑖 ) · 𝐵 ) = ( 0 · 𝐵 ) ) |
44 |
34 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) ) → 𝐵 ∈ ℂ ) |
45 |
44
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) ) → ( 0 · 𝐵 ) = 0 ) |
46 |
43 45
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) ) → ( ( 𝐹 ‘ 𝑖 ) · 𝐵 ) = 0 ) |
47 |
7 31 46 2
|
fsumss |
⊢ ( 𝜑 → Σ 𝑖 ∈ { 𝐾 } ( ( 𝐹 ‘ 𝑖 ) · 𝐵 ) = Σ 𝑖 ∈ 𝑆 ( ( 𝐹 ‘ 𝑖 ) · 𝐵 ) ) |
48 |
|
eleq1 |
⊢ ( 𝑗 = 𝐾 → ( 𝑗 ∈ 𝑆 ↔ 𝐾 ∈ 𝑆 ) ) |
49 |
48
|
anbi2d |
⊢ ( 𝑗 = 𝐾 → ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ↔ ( 𝜑 ∧ 𝐾 ∈ 𝑆 ) ) ) |
50 |
|
csbeq1 |
⊢ ( 𝑗 = 𝐾 → ⦋ 𝑗 / 𝑖 ⦌ 𝐵 = ⦋ 𝐾 / 𝑖 ⦌ 𝐵 ) |
51 |
50
|
eleq1d |
⊢ ( 𝑗 = 𝐾 → ( ⦋ 𝑗 / 𝑖 ⦌ 𝐵 ∈ ℂ ↔ ⦋ 𝐾 / 𝑖 ⦌ 𝐵 ∈ ℂ ) ) |
52 |
49 51
|
imbi12d |
⊢ ( 𝑗 = 𝐾 → ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ⦋ 𝑗 / 𝑖 ⦌ 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝐾 ∈ 𝑆 ) → ⦋ 𝐾 / 𝑖 ⦌ 𝐵 ∈ ℂ ) ) ) |
53 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) |
54 |
|
nfcsb1v |
⊢ Ⅎ 𝑖 ⦋ 𝑗 / 𝑖 ⦌ 𝐵 |
55 |
54
|
nfel1 |
⊢ Ⅎ 𝑖 ⦋ 𝑗 / 𝑖 ⦌ 𝐵 ∈ ℂ |
56 |
53 55
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ⦋ 𝑗 / 𝑖 ⦌ 𝐵 ∈ ℂ ) |
57 |
|
eleq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 ∈ 𝑆 ↔ 𝑗 ∈ 𝑆 ) ) |
58 |
57
|
anbi2d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝜑 ∧ 𝑖 ∈ 𝑆 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ) ) |
59 |
|
csbeq1a |
⊢ ( 𝑖 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑖 ⦌ 𝐵 ) |
60 |
59
|
eleq1d |
⊢ ( 𝑖 = 𝑗 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑗 / 𝑖 ⦌ 𝐵 ∈ ℂ ) ) |
61 |
58 60
|
imbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑆 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ⦋ 𝑗 / 𝑖 ⦌ 𝐵 ∈ ℂ ) ) ) |
62 |
56 61 4
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ⦋ 𝑗 / 𝑖 ⦌ 𝐵 ∈ ℂ ) |
63 |
52 62
|
vtoclg |
⊢ ( 𝐾 ∈ 𝑆 → ( ( 𝜑 ∧ 𝐾 ∈ 𝑆 ) → ⦋ 𝐾 / 𝑖 ⦌ 𝐵 ∈ ℂ ) ) |
64 |
63
|
anabsi7 |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ 𝑆 ) → ⦋ 𝐾 / 𝑖 ⦌ 𝐵 ∈ ℂ ) |
65 |
3 64
|
mpdan |
⊢ ( 𝜑 → ⦋ 𝐾 / 𝑖 ⦌ 𝐵 ∈ ℂ ) |
66 |
|
sumsns |
⊢ ( ( 𝐾 ∈ 𝑆 ∧ ⦋ 𝐾 / 𝑖 ⦌ 𝐵 ∈ ℂ ) → Σ 𝑖 ∈ { 𝐾 } 𝐵 = ⦋ 𝐾 / 𝑖 ⦌ 𝐵 ) |
67 |
3 65 66
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑖 ∈ { 𝐾 } 𝐵 = ⦋ 𝐾 / 𝑖 ⦌ 𝐵 ) |
68 |
26 47 67
|
3eqtr3d |
⊢ ( 𝜑 → Σ 𝑖 ∈ 𝑆 ( ( 𝐹 ‘ 𝑖 ) · 𝐵 ) = ⦋ 𝐾 / 𝑖 ⦌ 𝐵 ) |