| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flcidc.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑗 ∈ 𝑆 ↦ if ( 𝑗 = 𝐾 , 1 , 0 ) ) ) |
| 2 |
|
flcidc.s |
⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
| 3 |
|
flcidc.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑆 ) |
| 4 |
|
flcidc.b |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑆 ) → 𝐵 ∈ ℂ ) |
| 5 |
1
|
fveq1d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑖 ) = ( ( 𝑗 ∈ 𝑆 ↦ if ( 𝑗 = 𝐾 , 1 , 0 ) ) ‘ 𝑖 ) ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → ( 𝐹 ‘ 𝑖 ) = ( ( 𝑗 ∈ 𝑆 ↦ if ( 𝑗 = 𝐾 , 1 , 0 ) ) ‘ 𝑖 ) ) |
| 7 |
3
|
snssd |
⊢ ( 𝜑 → { 𝐾 } ⊆ 𝑆 ) |
| 8 |
7
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → 𝑖 ∈ 𝑆 ) |
| 9 |
|
eqeq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 = 𝐾 ↔ 𝑖 = 𝐾 ) ) |
| 10 |
9
|
ifbid |
⊢ ( 𝑗 = 𝑖 → if ( 𝑗 = 𝐾 , 1 , 0 ) = if ( 𝑖 = 𝐾 , 1 , 0 ) ) |
| 11 |
|
eqid |
⊢ ( 𝑗 ∈ 𝑆 ↦ if ( 𝑗 = 𝐾 , 1 , 0 ) ) = ( 𝑗 ∈ 𝑆 ↦ if ( 𝑗 = 𝐾 , 1 , 0 ) ) |
| 12 |
|
1ex |
⊢ 1 ∈ V |
| 13 |
|
c0ex |
⊢ 0 ∈ V |
| 14 |
12 13
|
ifex |
⊢ if ( 𝑖 = 𝐾 , 1 , 0 ) ∈ V |
| 15 |
10 11 14
|
fvmpt |
⊢ ( 𝑖 ∈ 𝑆 → ( ( 𝑗 ∈ 𝑆 ↦ if ( 𝑗 = 𝐾 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝐾 , 1 , 0 ) ) |
| 16 |
8 15
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → ( ( 𝑗 ∈ 𝑆 ↦ if ( 𝑗 = 𝐾 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝐾 , 1 , 0 ) ) |
| 17 |
6 16
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → ( 𝐹 ‘ 𝑖 ) = if ( 𝑖 = 𝐾 , 1 , 0 ) ) |
| 18 |
|
elsni |
⊢ ( 𝑖 ∈ { 𝐾 } → 𝑖 = 𝐾 ) |
| 19 |
18
|
iftrued |
⊢ ( 𝑖 ∈ { 𝐾 } → if ( 𝑖 = 𝐾 , 1 , 0 ) = 1 ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → if ( 𝑖 = 𝐾 , 1 , 0 ) = 1 ) |
| 21 |
17 20
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → ( 𝐹 ‘ 𝑖 ) = 1 ) |
| 22 |
21
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → ( ( 𝐹 ‘ 𝑖 ) · 𝐵 ) = ( 1 · 𝐵 ) ) |
| 23 |
8 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → 𝐵 ∈ ℂ ) |
| 24 |
23
|
mullidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → ( 1 · 𝐵 ) = 𝐵 ) |
| 25 |
22 24
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → ( ( 𝐹 ‘ 𝑖 ) · 𝐵 ) = 𝐵 ) |
| 26 |
25
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑖 ∈ { 𝐾 } ( ( 𝐹 ‘ 𝑖 ) · 𝐵 ) = Σ 𝑖 ∈ { 𝐾 } 𝐵 ) |
| 27 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 28 |
|
0cn |
⊢ 0 ∈ ℂ |
| 29 |
27 28
|
ifcli |
⊢ if ( 𝑖 = 𝐾 , 1 , 0 ) ∈ ℂ |
| 30 |
17 29
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → ( 𝐹 ‘ 𝑖 ) ∈ ℂ ) |
| 31 |
30 23
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐾 } ) → ( ( 𝐹 ‘ 𝑖 ) · 𝐵 ) ∈ ℂ ) |
| 32 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) ) → ( 𝐹 ‘ 𝑖 ) = ( ( 𝑗 ∈ 𝑆 ↦ if ( 𝑗 = 𝐾 , 1 , 0 ) ) ‘ 𝑖 ) ) |
| 33 |
|
eldifi |
⊢ ( 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) → 𝑖 ∈ 𝑆 ) |
| 34 |
33
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) ) → 𝑖 ∈ 𝑆 ) |
| 35 |
34 15
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) ) → ( ( 𝑗 ∈ 𝑆 ↦ if ( 𝑗 = 𝐾 , 1 , 0 ) ) ‘ 𝑖 ) = if ( 𝑖 = 𝐾 , 1 , 0 ) ) |
| 36 |
32 35
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) ) → ( 𝐹 ‘ 𝑖 ) = if ( 𝑖 = 𝐾 , 1 , 0 ) ) |
| 37 |
|
eldifn |
⊢ ( 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) → ¬ 𝑖 ∈ { 𝐾 } ) |
| 38 |
|
velsn |
⊢ ( 𝑖 ∈ { 𝐾 } ↔ 𝑖 = 𝐾 ) |
| 39 |
37 38
|
sylnib |
⊢ ( 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) → ¬ 𝑖 = 𝐾 ) |
| 40 |
39
|
iffalsed |
⊢ ( 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) → if ( 𝑖 = 𝐾 , 1 , 0 ) = 0 ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) ) → if ( 𝑖 = 𝐾 , 1 , 0 ) = 0 ) |
| 42 |
36 41
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) ) → ( 𝐹 ‘ 𝑖 ) = 0 ) |
| 43 |
42
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) ) → ( ( 𝐹 ‘ 𝑖 ) · 𝐵 ) = ( 0 · 𝐵 ) ) |
| 44 |
34 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) ) → 𝐵 ∈ ℂ ) |
| 45 |
44
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) ) → ( 0 · 𝐵 ) = 0 ) |
| 46 |
43 45
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑆 ∖ { 𝐾 } ) ) → ( ( 𝐹 ‘ 𝑖 ) · 𝐵 ) = 0 ) |
| 47 |
7 31 46 2
|
fsumss |
⊢ ( 𝜑 → Σ 𝑖 ∈ { 𝐾 } ( ( 𝐹 ‘ 𝑖 ) · 𝐵 ) = Σ 𝑖 ∈ 𝑆 ( ( 𝐹 ‘ 𝑖 ) · 𝐵 ) ) |
| 48 |
|
eleq1 |
⊢ ( 𝑗 = 𝐾 → ( 𝑗 ∈ 𝑆 ↔ 𝐾 ∈ 𝑆 ) ) |
| 49 |
48
|
anbi2d |
⊢ ( 𝑗 = 𝐾 → ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ↔ ( 𝜑 ∧ 𝐾 ∈ 𝑆 ) ) ) |
| 50 |
|
csbeq1 |
⊢ ( 𝑗 = 𝐾 → ⦋ 𝑗 / 𝑖 ⦌ 𝐵 = ⦋ 𝐾 / 𝑖 ⦌ 𝐵 ) |
| 51 |
50
|
eleq1d |
⊢ ( 𝑗 = 𝐾 → ( ⦋ 𝑗 / 𝑖 ⦌ 𝐵 ∈ ℂ ↔ ⦋ 𝐾 / 𝑖 ⦌ 𝐵 ∈ ℂ ) ) |
| 52 |
49 51
|
imbi12d |
⊢ ( 𝑗 = 𝐾 → ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ⦋ 𝑗 / 𝑖 ⦌ 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝐾 ∈ 𝑆 ) → ⦋ 𝐾 / 𝑖 ⦌ 𝐵 ∈ ℂ ) ) ) |
| 53 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) |
| 54 |
|
nfcsb1v |
⊢ Ⅎ 𝑖 ⦋ 𝑗 / 𝑖 ⦌ 𝐵 |
| 55 |
54
|
nfel1 |
⊢ Ⅎ 𝑖 ⦋ 𝑗 / 𝑖 ⦌ 𝐵 ∈ ℂ |
| 56 |
53 55
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ⦋ 𝑗 / 𝑖 ⦌ 𝐵 ∈ ℂ ) |
| 57 |
|
eleq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 ∈ 𝑆 ↔ 𝑗 ∈ 𝑆 ) ) |
| 58 |
57
|
anbi2d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝜑 ∧ 𝑖 ∈ 𝑆 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ) ) |
| 59 |
|
csbeq1a |
⊢ ( 𝑖 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑖 ⦌ 𝐵 ) |
| 60 |
59
|
eleq1d |
⊢ ( 𝑖 = 𝑗 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑗 / 𝑖 ⦌ 𝐵 ∈ ℂ ) ) |
| 61 |
58 60
|
imbi12d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑆 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ⦋ 𝑗 / 𝑖 ⦌ 𝐵 ∈ ℂ ) ) ) |
| 62 |
56 61 4
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ⦋ 𝑗 / 𝑖 ⦌ 𝐵 ∈ ℂ ) |
| 63 |
52 62
|
vtoclg |
⊢ ( 𝐾 ∈ 𝑆 → ( ( 𝜑 ∧ 𝐾 ∈ 𝑆 ) → ⦋ 𝐾 / 𝑖 ⦌ 𝐵 ∈ ℂ ) ) |
| 64 |
63
|
anabsi7 |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ 𝑆 ) → ⦋ 𝐾 / 𝑖 ⦌ 𝐵 ∈ ℂ ) |
| 65 |
3 64
|
mpdan |
⊢ ( 𝜑 → ⦋ 𝐾 / 𝑖 ⦌ 𝐵 ∈ ℂ ) |
| 66 |
|
sumsns |
⊢ ( ( 𝐾 ∈ 𝑆 ∧ ⦋ 𝐾 / 𝑖 ⦌ 𝐵 ∈ ℂ ) → Σ 𝑖 ∈ { 𝐾 } 𝐵 = ⦋ 𝐾 / 𝑖 ⦌ 𝐵 ) |
| 67 |
3 65 66
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑖 ∈ { 𝐾 } 𝐵 = ⦋ 𝐾 / 𝑖 ⦌ 𝐵 ) |
| 68 |
26 47 67
|
3eqtr3d |
⊢ ( 𝜑 → Σ 𝑖 ∈ 𝑆 ( ( 𝐹 ‘ 𝑖 ) · 𝐵 ) = ⦋ 𝐾 / 𝑖 ⦌ 𝐵 ) |