| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flcidc.f |
|
| 2 |
|
flcidc.s |
|
| 3 |
|
flcidc.k |
|
| 4 |
|
flcidc.b |
|
| 5 |
1
|
fveq1d |
|
| 6 |
5
|
adantr |
|
| 7 |
3
|
snssd |
|
| 8 |
7
|
sselda |
|
| 9 |
|
eqeq1 |
|
| 10 |
9
|
ifbid |
|
| 11 |
|
eqid |
|
| 12 |
|
1ex |
|
| 13 |
|
c0ex |
|
| 14 |
12 13
|
ifex |
|
| 15 |
10 11 14
|
fvmpt |
|
| 16 |
8 15
|
syl |
|
| 17 |
6 16
|
eqtrd |
|
| 18 |
|
elsni |
|
| 19 |
18
|
iftrued |
|
| 20 |
19
|
adantl |
|
| 21 |
17 20
|
eqtrd |
|
| 22 |
21
|
oveq1d |
|
| 23 |
8 4
|
syldan |
|
| 24 |
23
|
mullidd |
|
| 25 |
22 24
|
eqtrd |
|
| 26 |
25
|
sumeq2dv |
|
| 27 |
|
ax-1cn |
|
| 28 |
|
0cn |
|
| 29 |
27 28
|
ifcli |
|
| 30 |
17 29
|
eqeltrdi |
|
| 31 |
30 23
|
mulcld |
|
| 32 |
5
|
adantr |
|
| 33 |
|
eldifi |
|
| 34 |
33
|
adantl |
|
| 35 |
34 15
|
syl |
|
| 36 |
32 35
|
eqtrd |
|
| 37 |
|
eldifn |
|
| 38 |
|
velsn |
|
| 39 |
37 38
|
sylnib |
|
| 40 |
39
|
iffalsed |
|
| 41 |
40
|
adantl |
|
| 42 |
36 41
|
eqtrd |
|
| 43 |
42
|
oveq1d |
|
| 44 |
34 4
|
syldan |
|
| 45 |
44
|
mul02d |
|
| 46 |
43 45
|
eqtrd |
|
| 47 |
7 31 46 2
|
fsumss |
|
| 48 |
|
eleq1 |
|
| 49 |
48
|
anbi2d |
|
| 50 |
|
csbeq1 |
|
| 51 |
50
|
eleq1d |
|
| 52 |
49 51
|
imbi12d |
|
| 53 |
|
nfv |
|
| 54 |
|
nfcsb1v |
|
| 55 |
54
|
nfel1 |
|
| 56 |
53 55
|
nfim |
|
| 57 |
|
eleq1 |
|
| 58 |
57
|
anbi2d |
|
| 59 |
|
csbeq1a |
|
| 60 |
59
|
eleq1d |
|
| 61 |
58 60
|
imbi12d |
|
| 62 |
56 61 4
|
chvarfv |
|
| 63 |
52 62
|
vtoclg |
|
| 64 |
63
|
anabsi7 |
|
| 65 |
3 64
|
mpdan |
|
| 66 |
|
sumsns |
|
| 67 |
3 65 66
|
syl2anc |
|
| 68 |
26 47 67
|
3eqtr3d |
|