| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngunsnply.b |
⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ ℂfld ) ) |
| 2 |
|
rngunsnply.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 3 |
|
rngunsnply.s |
⊢ ( 𝜑 → 𝑆 = ( ( RingSpan ‘ ℂfld ) ‘ ( 𝐵 ∪ { 𝑋 } ) ) ) |
| 4 |
3
|
eleq2d |
⊢ ( 𝜑 → ( 𝑉 ∈ 𝑆 ↔ 𝑉 ∈ ( ( RingSpan ‘ ℂfld ) ‘ ( 𝐵 ∪ { 𝑋 } ) ) ) ) |
| 5 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → ℂfld ∈ Ring ) |
| 7 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → ℂ = ( Base ‘ ℂfld ) ) |
| 9 |
7
|
subrgss |
⊢ ( 𝐵 ∈ ( SubRing ‘ ℂfld ) → 𝐵 ⊆ ℂ ) |
| 10 |
1 9
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) |
| 11 |
2
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ ℂ ) |
| 12 |
10 11
|
unssd |
⊢ ( 𝜑 → ( 𝐵 ∪ { 𝑋 } ) ⊆ ℂ ) |
| 13 |
|
eqidd |
⊢ ( 𝜑 → ( RingSpan ‘ ℂfld ) = ( RingSpan ‘ ℂfld ) ) |
| 14 |
|
eqidd |
⊢ ( 𝜑 → ( ( RingSpan ‘ ℂfld ) ‘ ( 𝐵 ∪ { 𝑋 } ) ) = ( ( RingSpan ‘ ℂfld ) ‘ ( 𝐵 ∪ { 𝑋 } ) ) ) |
| 15 |
|
eqidd |
⊢ ( 𝜑 → ( ℂfld ↾s { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ) = ( ℂfld ↾s { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ) ) |
| 16 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → 0 = ( 0g ‘ ℂfld ) ) |
| 18 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → + = ( +g ‘ ℂfld ) ) |
| 20 |
|
plyf |
⊢ ( 𝑝 ∈ ( Poly ‘ 𝐵 ) → 𝑝 : ℂ ⟶ ℂ ) |
| 21 |
|
ffvelcdm |
⊢ ( ( 𝑝 : ℂ ⟶ ℂ ∧ 𝑋 ∈ ℂ ) → ( 𝑝 ‘ 𝑋 ) ∈ ℂ ) |
| 22 |
20 2 21
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝐵 ) ) → ( 𝑝 ‘ 𝑋 ) ∈ ℂ ) |
| 23 |
|
eleq1 |
⊢ ( 𝑎 = ( 𝑝 ‘ 𝑋 ) → ( 𝑎 ∈ ℂ ↔ ( 𝑝 ‘ 𝑋 ) ∈ ℂ ) ) |
| 24 |
22 23
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝐵 ) ) → ( 𝑎 = ( 𝑝 ‘ 𝑋 ) → 𝑎 ∈ ℂ ) ) |
| 25 |
24
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) → 𝑎 ∈ ℂ ) ) |
| 26 |
25
|
ss2abdv |
⊢ ( 𝜑 → { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ⊆ { 𝑎 ∣ 𝑎 ∈ ℂ } ) |
| 27 |
|
abid2 |
⊢ { 𝑎 ∣ 𝑎 ∈ ℂ } = ℂ |
| 28 |
27 7
|
eqtri |
⊢ { 𝑎 ∣ 𝑎 ∈ ℂ } = ( Base ‘ ℂfld ) |
| 29 |
26 28
|
sseqtrdi |
⊢ ( 𝜑 → { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ⊆ ( Base ‘ ℂfld ) ) |
| 30 |
|
abid2 |
⊢ { 𝑎 ∣ 𝑎 ∈ 𝐵 } = 𝐵 |
| 31 |
|
plyconst |
⊢ ( ( 𝐵 ⊆ ℂ ∧ 𝑎 ∈ 𝐵 ) → ( ℂ × { 𝑎 } ) ∈ ( Poly ‘ 𝐵 ) ) |
| 32 |
10 31
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ℂ × { 𝑎 } ) ∈ ( Poly ‘ 𝐵 ) ) |
| 33 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑋 ∈ ℂ ) |
| 34 |
|
vex |
⊢ 𝑎 ∈ V |
| 35 |
34
|
fvconst2 |
⊢ ( 𝑋 ∈ ℂ → ( ( ℂ × { 𝑎 } ) ‘ 𝑋 ) = 𝑎 ) |
| 36 |
33 35
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( ℂ × { 𝑎 } ) ‘ 𝑋 ) = 𝑎 ) |
| 37 |
36
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑎 = ( ( ℂ × { 𝑎 } ) ‘ 𝑋 ) ) |
| 38 |
|
fveq1 |
⊢ ( 𝑝 = ( ℂ × { 𝑎 } ) → ( 𝑝 ‘ 𝑋 ) = ( ( ℂ × { 𝑎 } ) ‘ 𝑋 ) ) |
| 39 |
38
|
rspceeqv |
⊢ ( ( ( ℂ × { 𝑎 } ) ∈ ( Poly ‘ 𝐵 ) ∧ 𝑎 = ( ( ℂ × { 𝑎 } ) ‘ 𝑋 ) ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) ) |
| 40 |
32 37 39
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) ) |
| 41 |
40
|
ex |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐵 → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) ) ) |
| 42 |
41
|
ss2abdv |
⊢ ( 𝜑 → { 𝑎 ∣ 𝑎 ∈ 𝐵 } ⊆ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ) |
| 43 |
30 42
|
eqsstrrid |
⊢ ( 𝜑 → 𝐵 ⊆ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ) |
| 44 |
|
subrgsubg |
⊢ ( 𝐵 ∈ ( SubRing ‘ ℂfld ) → 𝐵 ∈ ( SubGrp ‘ ℂfld ) ) |
| 45 |
1 44
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ( SubGrp ‘ ℂfld ) ) |
| 46 |
16
|
subg0cl |
⊢ ( 𝐵 ∈ ( SubGrp ‘ ℂfld ) → 0 ∈ 𝐵 ) |
| 47 |
45 46
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 48 |
43 47
|
sseldd |
⊢ ( 𝜑 → 0 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ) |
| 49 |
|
biid |
⊢ ( 𝜑 ↔ 𝜑 ) |
| 50 |
|
vex |
⊢ 𝑏 ∈ V |
| 51 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 = ( 𝑝 ‘ 𝑋 ) ↔ 𝑏 = ( 𝑝 ‘ 𝑋 ) ) ) |
| 52 |
51
|
rexbidv |
⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) ↔ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑏 = ( 𝑝 ‘ 𝑋 ) ) ) |
| 53 |
|
fveq1 |
⊢ ( 𝑝 = 𝑒 → ( 𝑝 ‘ 𝑋 ) = ( 𝑒 ‘ 𝑋 ) ) |
| 54 |
53
|
eqeq2d |
⊢ ( 𝑝 = 𝑒 → ( 𝑏 = ( 𝑝 ‘ 𝑋 ) ↔ 𝑏 = ( 𝑒 ‘ 𝑋 ) ) ) |
| 55 |
54
|
cbvrexvw |
⊢ ( ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑏 = ( 𝑝 ‘ 𝑋 ) ↔ ∃ 𝑒 ∈ ( Poly ‘ 𝐵 ) 𝑏 = ( 𝑒 ‘ 𝑋 ) ) |
| 56 |
52 55
|
bitrdi |
⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) ↔ ∃ 𝑒 ∈ ( Poly ‘ 𝐵 ) 𝑏 = ( 𝑒 ‘ 𝑋 ) ) ) |
| 57 |
50 56
|
elab |
⊢ ( 𝑏 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ↔ ∃ 𝑒 ∈ ( Poly ‘ 𝐵 ) 𝑏 = ( 𝑒 ‘ 𝑋 ) ) |
| 58 |
|
vex |
⊢ 𝑐 ∈ V |
| 59 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑐 → ( 𝑎 = ( 𝑝 ‘ 𝑋 ) ↔ 𝑐 = ( 𝑝 ‘ 𝑋 ) ) ) |
| 60 |
59
|
rexbidv |
⊢ ( 𝑎 = 𝑐 → ( ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) ↔ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑐 = ( 𝑝 ‘ 𝑋 ) ) ) |
| 61 |
|
fveq1 |
⊢ ( 𝑝 = 𝑑 → ( 𝑝 ‘ 𝑋 ) = ( 𝑑 ‘ 𝑋 ) ) |
| 62 |
61
|
eqeq2d |
⊢ ( 𝑝 = 𝑑 → ( 𝑐 = ( 𝑝 ‘ 𝑋 ) ↔ 𝑐 = ( 𝑑 ‘ 𝑋 ) ) ) |
| 63 |
62
|
cbvrexvw |
⊢ ( ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑐 = ( 𝑝 ‘ 𝑋 ) ↔ ∃ 𝑑 ∈ ( Poly ‘ 𝐵 ) 𝑐 = ( 𝑑 ‘ 𝑋 ) ) |
| 64 |
60 63
|
bitrdi |
⊢ ( 𝑎 = 𝑐 → ( ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) ↔ ∃ 𝑑 ∈ ( Poly ‘ 𝐵 ) 𝑐 = ( 𝑑 ‘ 𝑋 ) ) ) |
| 65 |
58 64
|
elab |
⊢ ( 𝑐 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ↔ ∃ 𝑑 ∈ ( Poly ‘ 𝐵 ) 𝑐 = ( 𝑑 ‘ 𝑋 ) ) |
| 66 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) ∧ 𝑑 ∈ ( Poly ‘ 𝐵 ) ) → 𝑒 ∈ ( Poly ‘ 𝐵 ) ) |
| 67 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) ∧ 𝑑 ∈ ( Poly ‘ 𝐵 ) ) → 𝑑 ∈ ( Poly ‘ 𝐵 ) ) |
| 68 |
18
|
subrgacl |
⊢ ( ( 𝐵 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 + 𝑏 ) ∈ 𝐵 ) |
| 69 |
68
|
3expb |
⊢ ( ( 𝐵 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 + 𝑏 ) ∈ 𝐵 ) |
| 70 |
1 69
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 + 𝑏 ) ∈ 𝐵 ) |
| 71 |
70
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 + 𝑏 ) ∈ 𝐵 ) |
| 72 |
71
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) ∧ 𝑑 ∈ ( Poly ‘ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 + 𝑏 ) ∈ 𝐵 ) |
| 73 |
66 67 72
|
plyadd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) ∧ 𝑑 ∈ ( Poly ‘ 𝐵 ) ) → ( 𝑒 ∘f + 𝑑 ) ∈ ( Poly ‘ 𝐵 ) ) |
| 74 |
|
plyf |
⊢ ( 𝑒 ∈ ( Poly ‘ 𝐵 ) → 𝑒 : ℂ ⟶ ℂ ) |
| 75 |
74
|
ffnd |
⊢ ( 𝑒 ∈ ( Poly ‘ 𝐵 ) → 𝑒 Fn ℂ ) |
| 76 |
75
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) ∧ 𝑑 ∈ ( Poly ‘ 𝐵 ) ) → 𝑒 Fn ℂ ) |
| 77 |
|
plyf |
⊢ ( 𝑑 ∈ ( Poly ‘ 𝐵 ) → 𝑑 : ℂ ⟶ ℂ ) |
| 78 |
77
|
ffnd |
⊢ ( 𝑑 ∈ ( Poly ‘ 𝐵 ) → 𝑑 Fn ℂ ) |
| 79 |
78
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) ∧ 𝑑 ∈ ( Poly ‘ 𝐵 ) ) → 𝑑 Fn ℂ ) |
| 80 |
|
cnex |
⊢ ℂ ∈ V |
| 81 |
80
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) ∧ 𝑑 ∈ ( Poly ‘ 𝐵 ) ) → ℂ ∈ V ) |
| 82 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) ∧ 𝑑 ∈ ( Poly ‘ 𝐵 ) ) → 𝑋 ∈ ℂ ) |
| 83 |
|
fnfvof |
⊢ ( ( ( 𝑒 Fn ℂ ∧ 𝑑 Fn ℂ ) ∧ ( ℂ ∈ V ∧ 𝑋 ∈ ℂ ) ) → ( ( 𝑒 ∘f + 𝑑 ) ‘ 𝑋 ) = ( ( 𝑒 ‘ 𝑋 ) + ( 𝑑 ‘ 𝑋 ) ) ) |
| 84 |
76 79 81 82 83
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) ∧ 𝑑 ∈ ( Poly ‘ 𝐵 ) ) → ( ( 𝑒 ∘f + 𝑑 ) ‘ 𝑋 ) = ( ( 𝑒 ‘ 𝑋 ) + ( 𝑑 ‘ 𝑋 ) ) ) |
| 85 |
84
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) ∧ 𝑑 ∈ ( Poly ‘ 𝐵 ) ) → ( ( 𝑒 ‘ 𝑋 ) + ( 𝑑 ‘ 𝑋 ) ) = ( ( 𝑒 ∘f + 𝑑 ) ‘ 𝑋 ) ) |
| 86 |
|
fveq1 |
⊢ ( 𝑝 = ( 𝑒 ∘f + 𝑑 ) → ( 𝑝 ‘ 𝑋 ) = ( ( 𝑒 ∘f + 𝑑 ) ‘ 𝑋 ) ) |
| 87 |
86
|
rspceeqv |
⊢ ( ( ( 𝑒 ∘f + 𝑑 ) ∈ ( Poly ‘ 𝐵 ) ∧ ( ( 𝑒 ‘ 𝑋 ) + ( 𝑑 ‘ 𝑋 ) ) = ( ( 𝑒 ∘f + 𝑑 ) ‘ 𝑋 ) ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( 𝑒 ‘ 𝑋 ) + ( 𝑑 ‘ 𝑋 ) ) = ( 𝑝 ‘ 𝑋 ) ) |
| 88 |
73 85 87
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) ∧ 𝑑 ∈ ( Poly ‘ 𝐵 ) ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( 𝑒 ‘ 𝑋 ) + ( 𝑑 ‘ 𝑋 ) ) = ( 𝑝 ‘ 𝑋 ) ) |
| 89 |
|
oveq2 |
⊢ ( 𝑐 = ( 𝑑 ‘ 𝑋 ) → ( ( 𝑒 ‘ 𝑋 ) + 𝑐 ) = ( ( 𝑒 ‘ 𝑋 ) + ( 𝑑 ‘ 𝑋 ) ) ) |
| 90 |
89
|
eqeq1d |
⊢ ( 𝑐 = ( 𝑑 ‘ 𝑋 ) → ( ( ( 𝑒 ‘ 𝑋 ) + 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ↔ ( ( 𝑒 ‘ 𝑋 ) + ( 𝑑 ‘ 𝑋 ) ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 91 |
90
|
rexbidv |
⊢ ( 𝑐 = ( 𝑑 ‘ 𝑋 ) → ( ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( 𝑒 ‘ 𝑋 ) + 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ↔ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( 𝑒 ‘ 𝑋 ) + ( 𝑑 ‘ 𝑋 ) ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 92 |
88 91
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) ∧ 𝑑 ∈ ( Poly ‘ 𝐵 ) ) → ( 𝑐 = ( 𝑑 ‘ 𝑋 ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( 𝑒 ‘ 𝑋 ) + 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 93 |
92
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) → ( ∃ 𝑑 ∈ ( Poly ‘ 𝐵 ) 𝑐 = ( 𝑑 ‘ 𝑋 ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( 𝑒 ‘ 𝑋 ) + 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 94 |
|
oveq1 |
⊢ ( 𝑏 = ( 𝑒 ‘ 𝑋 ) → ( 𝑏 + 𝑐 ) = ( ( 𝑒 ‘ 𝑋 ) + 𝑐 ) ) |
| 95 |
94
|
eqeq1d |
⊢ ( 𝑏 = ( 𝑒 ‘ 𝑋 ) → ( ( 𝑏 + 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ↔ ( ( 𝑒 ‘ 𝑋 ) + 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 96 |
95
|
rexbidv |
⊢ ( 𝑏 = ( 𝑒 ‘ 𝑋 ) → ( ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( 𝑏 + 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ↔ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( 𝑒 ‘ 𝑋 ) + 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 97 |
96
|
imbi2d |
⊢ ( 𝑏 = ( 𝑒 ‘ 𝑋 ) → ( ( ∃ 𝑑 ∈ ( Poly ‘ 𝐵 ) 𝑐 = ( 𝑑 ‘ 𝑋 ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( 𝑏 + 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) ↔ ( ∃ 𝑑 ∈ ( Poly ‘ 𝐵 ) 𝑐 = ( 𝑑 ‘ 𝑋 ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( 𝑒 ‘ 𝑋 ) + 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) ) ) |
| 98 |
93 97
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) → ( 𝑏 = ( 𝑒 ‘ 𝑋 ) → ( ∃ 𝑑 ∈ ( Poly ‘ 𝐵 ) 𝑐 = ( 𝑑 ‘ 𝑋 ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( 𝑏 + 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) ) ) |
| 99 |
98
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑒 ∈ ( Poly ‘ 𝐵 ) 𝑏 = ( 𝑒 ‘ 𝑋 ) → ( ∃ 𝑑 ∈ ( Poly ‘ 𝐵 ) 𝑐 = ( 𝑑 ‘ 𝑋 ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( 𝑏 + 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) ) ) |
| 100 |
99
|
3imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑒 ∈ ( Poly ‘ 𝐵 ) 𝑏 = ( 𝑒 ‘ 𝑋 ) ∧ ∃ 𝑑 ∈ ( Poly ‘ 𝐵 ) 𝑐 = ( 𝑑 ‘ 𝑋 ) ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( 𝑏 + 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) |
| 101 |
49 57 65 100
|
syl3anb |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ∧ 𝑐 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( 𝑏 + 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) |
| 102 |
|
ovex |
⊢ ( 𝑏 + 𝑐 ) ∈ V |
| 103 |
|
eqeq1 |
⊢ ( 𝑎 = ( 𝑏 + 𝑐 ) → ( 𝑎 = ( 𝑝 ‘ 𝑋 ) ↔ ( 𝑏 + 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 104 |
103
|
rexbidv |
⊢ ( 𝑎 = ( 𝑏 + 𝑐 ) → ( ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) ↔ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( 𝑏 + 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 105 |
102 104
|
elab |
⊢ ( ( 𝑏 + 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ↔ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( 𝑏 + 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) |
| 106 |
101 105
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ∧ 𝑐 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ) → ( 𝑏 + 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ) |
| 107 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 108 |
|
cnfldneg |
⊢ ( 1 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 1 ) = - 1 ) |
| 109 |
107 108
|
mp1i |
⊢ ( 𝜑 → ( ( invg ‘ ℂfld ) ‘ 1 ) = - 1 ) |
| 110 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
| 111 |
110
|
subrg1cl |
⊢ ( 𝐵 ∈ ( SubRing ‘ ℂfld ) → 1 ∈ 𝐵 ) |
| 112 |
1 111
|
syl |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
| 113 |
|
eqid |
⊢ ( invg ‘ ℂfld ) = ( invg ‘ ℂfld ) |
| 114 |
113
|
subginvcl |
⊢ ( ( 𝐵 ∈ ( SubGrp ‘ ℂfld ) ∧ 1 ∈ 𝐵 ) → ( ( invg ‘ ℂfld ) ‘ 1 ) ∈ 𝐵 ) |
| 115 |
45 112 114
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ ℂfld ) ‘ 1 ) ∈ 𝐵 ) |
| 116 |
109 115
|
eqeltrrd |
⊢ ( 𝜑 → - 1 ∈ 𝐵 ) |
| 117 |
|
plyconst |
⊢ ( ( 𝐵 ⊆ ℂ ∧ - 1 ∈ 𝐵 ) → ( ℂ × { - 1 } ) ∈ ( Poly ‘ 𝐵 ) ) |
| 118 |
10 116 117
|
syl2anc |
⊢ ( 𝜑 → ( ℂ × { - 1 } ) ∈ ( Poly ‘ 𝐵 ) ) |
| 119 |
118
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) → ( ℂ × { - 1 } ) ∈ ( Poly ‘ 𝐵 ) ) |
| 120 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) → 𝑒 ∈ ( Poly ‘ 𝐵 ) ) |
| 121 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 122 |
121
|
subrgmcl |
⊢ ( ( 𝐵 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
| 123 |
122
|
3expb |
⊢ ( ( 𝐵 ∈ ( SubRing ‘ ℂfld ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
| 124 |
1 123
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
| 125 |
124
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
| 126 |
119 120 71 125
|
plymul |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) → ( ( ℂ × { - 1 } ) ∘f · 𝑒 ) ∈ ( Poly ‘ 𝐵 ) ) |
| 127 |
|
ffvelcdm |
⊢ ( ( 𝑒 : ℂ ⟶ ℂ ∧ 𝑋 ∈ ℂ ) → ( 𝑒 ‘ 𝑋 ) ∈ ℂ ) |
| 128 |
74 2 127
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) → ( 𝑒 ‘ 𝑋 ) ∈ ℂ ) |
| 129 |
|
cnfldneg |
⊢ ( ( 𝑒 ‘ 𝑋 ) ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ ( 𝑒 ‘ 𝑋 ) ) = - ( 𝑒 ‘ 𝑋 ) ) |
| 130 |
128 129
|
syl |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) → ( ( invg ‘ ℂfld ) ‘ ( 𝑒 ‘ 𝑋 ) ) = - ( 𝑒 ‘ 𝑋 ) ) |
| 131 |
|
negex |
⊢ - 1 ∈ V |
| 132 |
|
fnconstg |
⊢ ( - 1 ∈ V → ( ℂ × { - 1 } ) Fn ℂ ) |
| 133 |
131 132
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) → ( ℂ × { - 1 } ) Fn ℂ ) |
| 134 |
75
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) → 𝑒 Fn ℂ ) |
| 135 |
80
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) → ℂ ∈ V ) |
| 136 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) → 𝑋 ∈ ℂ ) |
| 137 |
|
fnfvof |
⊢ ( ( ( ( ℂ × { - 1 } ) Fn ℂ ∧ 𝑒 Fn ℂ ) ∧ ( ℂ ∈ V ∧ 𝑋 ∈ ℂ ) ) → ( ( ( ℂ × { - 1 } ) ∘f · 𝑒 ) ‘ 𝑋 ) = ( ( ( ℂ × { - 1 } ) ‘ 𝑋 ) · ( 𝑒 ‘ 𝑋 ) ) ) |
| 138 |
133 134 135 136 137
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) → ( ( ( ℂ × { - 1 } ) ∘f · 𝑒 ) ‘ 𝑋 ) = ( ( ( ℂ × { - 1 } ) ‘ 𝑋 ) · ( 𝑒 ‘ 𝑋 ) ) ) |
| 139 |
131
|
fvconst2 |
⊢ ( 𝑋 ∈ ℂ → ( ( ℂ × { - 1 } ) ‘ 𝑋 ) = - 1 ) |
| 140 |
136 139
|
syl |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) → ( ( ℂ × { - 1 } ) ‘ 𝑋 ) = - 1 ) |
| 141 |
140
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) → ( ( ( ℂ × { - 1 } ) ‘ 𝑋 ) · ( 𝑒 ‘ 𝑋 ) ) = ( - 1 · ( 𝑒 ‘ 𝑋 ) ) ) |
| 142 |
128
|
mulm1d |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) → ( - 1 · ( 𝑒 ‘ 𝑋 ) ) = - ( 𝑒 ‘ 𝑋 ) ) |
| 143 |
138 141 142
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) → ( ( ( ℂ × { - 1 } ) ∘f · 𝑒 ) ‘ 𝑋 ) = - ( 𝑒 ‘ 𝑋 ) ) |
| 144 |
130 143
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) → ( ( invg ‘ ℂfld ) ‘ ( 𝑒 ‘ 𝑋 ) ) = ( ( ( ℂ × { - 1 } ) ∘f · 𝑒 ) ‘ 𝑋 ) ) |
| 145 |
|
fveq1 |
⊢ ( 𝑝 = ( ( ℂ × { - 1 } ) ∘f · 𝑒 ) → ( 𝑝 ‘ 𝑋 ) = ( ( ( ℂ × { - 1 } ) ∘f · 𝑒 ) ‘ 𝑋 ) ) |
| 146 |
145
|
rspceeqv |
⊢ ( ( ( ( ℂ × { - 1 } ) ∘f · 𝑒 ) ∈ ( Poly ‘ 𝐵 ) ∧ ( ( invg ‘ ℂfld ) ‘ ( 𝑒 ‘ 𝑋 ) ) = ( ( ( ℂ × { - 1 } ) ∘f · 𝑒 ) ‘ 𝑋 ) ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( invg ‘ ℂfld ) ‘ ( 𝑒 ‘ 𝑋 ) ) = ( 𝑝 ‘ 𝑋 ) ) |
| 147 |
126 144 146
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( invg ‘ ℂfld ) ‘ ( 𝑒 ‘ 𝑋 ) ) = ( 𝑝 ‘ 𝑋 ) ) |
| 148 |
|
fveqeq2 |
⊢ ( 𝑏 = ( 𝑒 ‘ 𝑋 ) → ( ( ( invg ‘ ℂfld ) ‘ 𝑏 ) = ( 𝑝 ‘ 𝑋 ) ↔ ( ( invg ‘ ℂfld ) ‘ ( 𝑒 ‘ 𝑋 ) ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 149 |
148
|
rexbidv |
⊢ ( 𝑏 = ( 𝑒 ‘ 𝑋 ) → ( ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( invg ‘ ℂfld ) ‘ 𝑏 ) = ( 𝑝 ‘ 𝑋 ) ↔ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( invg ‘ ℂfld ) ‘ ( 𝑒 ‘ 𝑋 ) ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 150 |
147 149
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) → ( 𝑏 = ( 𝑒 ‘ 𝑋 ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( invg ‘ ℂfld ) ‘ 𝑏 ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 151 |
150
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑒 ∈ ( Poly ‘ 𝐵 ) 𝑏 = ( 𝑒 ‘ 𝑋 ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( invg ‘ ℂfld ) ‘ 𝑏 ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 152 |
151
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑒 ∈ ( Poly ‘ 𝐵 ) 𝑏 = ( 𝑒 ‘ 𝑋 ) ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( invg ‘ ℂfld ) ‘ 𝑏 ) = ( 𝑝 ‘ 𝑋 ) ) |
| 153 |
57 152
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( invg ‘ ℂfld ) ‘ 𝑏 ) = ( 𝑝 ‘ 𝑋 ) ) |
| 154 |
|
fvex |
⊢ ( ( invg ‘ ℂfld ) ‘ 𝑏 ) ∈ V |
| 155 |
|
eqeq1 |
⊢ ( 𝑎 = ( ( invg ‘ ℂfld ) ‘ 𝑏 ) → ( 𝑎 = ( 𝑝 ‘ 𝑋 ) ↔ ( ( invg ‘ ℂfld ) ‘ 𝑏 ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 156 |
155
|
rexbidv |
⊢ ( 𝑎 = ( ( invg ‘ ℂfld ) ‘ 𝑏 ) → ( ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) ↔ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( invg ‘ ℂfld ) ‘ 𝑏 ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 157 |
154 156
|
elab |
⊢ ( ( ( invg ‘ ℂfld ) ‘ 𝑏 ) ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ↔ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( invg ‘ ℂfld ) ‘ 𝑏 ) = ( 𝑝 ‘ 𝑋 ) ) |
| 158 |
153 157
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ) → ( ( invg ‘ ℂfld ) ‘ 𝑏 ) ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ) |
| 159 |
110
|
a1i |
⊢ ( 𝜑 → 1 = ( 1r ‘ ℂfld ) ) |
| 160 |
121
|
a1i |
⊢ ( 𝜑 → · = ( .r ‘ ℂfld ) ) |
| 161 |
43 112
|
sseldd |
⊢ ( 𝜑 → 1 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ) |
| 162 |
125
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) ∧ 𝑑 ∈ ( Poly ‘ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
| 163 |
66 67 72 162
|
plymul |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) ∧ 𝑑 ∈ ( Poly ‘ 𝐵 ) ) → ( 𝑒 ∘f · 𝑑 ) ∈ ( Poly ‘ 𝐵 ) ) |
| 164 |
|
fnfvof |
⊢ ( ( ( 𝑒 Fn ℂ ∧ 𝑑 Fn ℂ ) ∧ ( ℂ ∈ V ∧ 𝑋 ∈ ℂ ) ) → ( ( 𝑒 ∘f · 𝑑 ) ‘ 𝑋 ) = ( ( 𝑒 ‘ 𝑋 ) · ( 𝑑 ‘ 𝑋 ) ) ) |
| 165 |
76 79 81 82 164
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) ∧ 𝑑 ∈ ( Poly ‘ 𝐵 ) ) → ( ( 𝑒 ∘f · 𝑑 ) ‘ 𝑋 ) = ( ( 𝑒 ‘ 𝑋 ) · ( 𝑑 ‘ 𝑋 ) ) ) |
| 166 |
165
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) ∧ 𝑑 ∈ ( Poly ‘ 𝐵 ) ) → ( ( 𝑒 ‘ 𝑋 ) · ( 𝑑 ‘ 𝑋 ) ) = ( ( 𝑒 ∘f · 𝑑 ) ‘ 𝑋 ) ) |
| 167 |
|
fveq1 |
⊢ ( 𝑝 = ( 𝑒 ∘f · 𝑑 ) → ( 𝑝 ‘ 𝑋 ) = ( ( 𝑒 ∘f · 𝑑 ) ‘ 𝑋 ) ) |
| 168 |
167
|
rspceeqv |
⊢ ( ( ( 𝑒 ∘f · 𝑑 ) ∈ ( Poly ‘ 𝐵 ) ∧ ( ( 𝑒 ‘ 𝑋 ) · ( 𝑑 ‘ 𝑋 ) ) = ( ( 𝑒 ∘f · 𝑑 ) ‘ 𝑋 ) ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( 𝑒 ‘ 𝑋 ) · ( 𝑑 ‘ 𝑋 ) ) = ( 𝑝 ‘ 𝑋 ) ) |
| 169 |
163 166 168
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) ∧ 𝑑 ∈ ( Poly ‘ 𝐵 ) ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( 𝑒 ‘ 𝑋 ) · ( 𝑑 ‘ 𝑋 ) ) = ( 𝑝 ‘ 𝑋 ) ) |
| 170 |
|
oveq2 |
⊢ ( 𝑐 = ( 𝑑 ‘ 𝑋 ) → ( ( 𝑒 ‘ 𝑋 ) · 𝑐 ) = ( ( 𝑒 ‘ 𝑋 ) · ( 𝑑 ‘ 𝑋 ) ) ) |
| 171 |
170
|
eqeq1d |
⊢ ( 𝑐 = ( 𝑑 ‘ 𝑋 ) → ( ( ( 𝑒 ‘ 𝑋 ) · 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ↔ ( ( 𝑒 ‘ 𝑋 ) · ( 𝑑 ‘ 𝑋 ) ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 172 |
171
|
rexbidv |
⊢ ( 𝑐 = ( 𝑑 ‘ 𝑋 ) → ( ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( 𝑒 ‘ 𝑋 ) · 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ↔ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( 𝑒 ‘ 𝑋 ) · ( 𝑑 ‘ 𝑋 ) ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 173 |
169 172
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) ∧ 𝑑 ∈ ( Poly ‘ 𝐵 ) ) → ( 𝑐 = ( 𝑑 ‘ 𝑋 ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( 𝑒 ‘ 𝑋 ) · 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 174 |
173
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) → ( ∃ 𝑑 ∈ ( Poly ‘ 𝐵 ) 𝑐 = ( 𝑑 ‘ 𝑋 ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( 𝑒 ‘ 𝑋 ) · 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 175 |
|
oveq1 |
⊢ ( 𝑏 = ( 𝑒 ‘ 𝑋 ) → ( 𝑏 · 𝑐 ) = ( ( 𝑒 ‘ 𝑋 ) · 𝑐 ) ) |
| 176 |
175
|
eqeq1d |
⊢ ( 𝑏 = ( 𝑒 ‘ 𝑋 ) → ( ( 𝑏 · 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ↔ ( ( 𝑒 ‘ 𝑋 ) · 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 177 |
176
|
rexbidv |
⊢ ( 𝑏 = ( 𝑒 ‘ 𝑋 ) → ( ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( 𝑏 · 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ↔ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( 𝑒 ‘ 𝑋 ) · 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 178 |
177
|
imbi2d |
⊢ ( 𝑏 = ( 𝑒 ‘ 𝑋 ) → ( ( ∃ 𝑑 ∈ ( Poly ‘ 𝐵 ) 𝑐 = ( 𝑑 ‘ 𝑋 ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( 𝑏 · 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) ↔ ( ∃ 𝑑 ∈ ( Poly ‘ 𝐵 ) 𝑐 = ( 𝑑 ‘ 𝑋 ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( ( 𝑒 ‘ 𝑋 ) · 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) ) ) |
| 179 |
174 178
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( Poly ‘ 𝐵 ) ) → ( 𝑏 = ( 𝑒 ‘ 𝑋 ) → ( ∃ 𝑑 ∈ ( Poly ‘ 𝐵 ) 𝑐 = ( 𝑑 ‘ 𝑋 ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( 𝑏 · 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) ) ) |
| 180 |
179
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑒 ∈ ( Poly ‘ 𝐵 ) 𝑏 = ( 𝑒 ‘ 𝑋 ) → ( ∃ 𝑑 ∈ ( Poly ‘ 𝐵 ) 𝑐 = ( 𝑑 ‘ 𝑋 ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( 𝑏 · 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) ) ) |
| 181 |
180
|
3imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑒 ∈ ( Poly ‘ 𝐵 ) 𝑏 = ( 𝑒 ‘ 𝑋 ) ∧ ∃ 𝑑 ∈ ( Poly ‘ 𝐵 ) 𝑐 = ( 𝑑 ‘ 𝑋 ) ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( 𝑏 · 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) |
| 182 |
49 57 65 181
|
syl3anb |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ∧ 𝑐 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( 𝑏 · 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) |
| 183 |
|
ovex |
⊢ ( 𝑏 · 𝑐 ) ∈ V |
| 184 |
|
eqeq1 |
⊢ ( 𝑎 = ( 𝑏 · 𝑐 ) → ( 𝑎 = ( 𝑝 ‘ 𝑋 ) ↔ ( 𝑏 · 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 185 |
184
|
rexbidv |
⊢ ( 𝑎 = ( 𝑏 · 𝑐 ) → ( ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) ↔ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( 𝑏 · 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) ) |
| 186 |
183 185
|
elab |
⊢ ( ( 𝑏 · 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ↔ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) ( 𝑏 · 𝑐 ) = ( 𝑝 ‘ 𝑋 ) ) |
| 187 |
182 186
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ∧ 𝑐 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ) → ( 𝑏 · 𝑐 ) ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ) |
| 188 |
15 17 19 29 48 106 158 159 160 161 187 6
|
issubrgd |
⊢ ( 𝜑 → { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ∈ ( SubRing ‘ ℂfld ) ) |
| 189 |
|
plyid |
⊢ ( ( 𝐵 ⊆ ℂ ∧ 1 ∈ 𝐵 ) → Xp ∈ ( Poly ‘ 𝐵 ) ) |
| 190 |
10 112 189
|
syl2anc |
⊢ ( 𝜑 → Xp ∈ ( Poly ‘ 𝐵 ) ) |
| 191 |
|
df-idp |
⊢ Xp = ( I ↾ ℂ ) |
| 192 |
191
|
fveq1i |
⊢ ( Xp ‘ 𝑋 ) = ( ( I ↾ ℂ ) ‘ 𝑋 ) |
| 193 |
|
fvresi |
⊢ ( 𝑋 ∈ ℂ → ( ( I ↾ ℂ ) ‘ 𝑋 ) = 𝑋 ) |
| 194 |
2 193
|
syl |
⊢ ( 𝜑 → ( ( I ↾ ℂ ) ‘ 𝑋 ) = 𝑋 ) |
| 195 |
192 194
|
eqtr2id |
⊢ ( 𝜑 → 𝑋 = ( Xp ‘ 𝑋 ) ) |
| 196 |
|
fveq1 |
⊢ ( 𝑝 = Xp → ( 𝑝 ‘ 𝑋 ) = ( Xp ‘ 𝑋 ) ) |
| 197 |
196
|
rspceeqv |
⊢ ( ( Xp ∈ ( Poly ‘ 𝐵 ) ∧ 𝑋 = ( Xp ‘ 𝑋 ) ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑋 = ( 𝑝 ‘ 𝑋 ) ) |
| 198 |
190 195 197
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑋 = ( 𝑝 ‘ 𝑋 ) ) |
| 199 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑋 → ( 𝑎 = ( 𝑝 ‘ 𝑋 ) ↔ 𝑋 = ( 𝑝 ‘ 𝑋 ) ) ) |
| 200 |
199
|
rexbidv |
⊢ ( 𝑎 = 𝑋 → ( ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) ↔ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑋 = ( 𝑝 ‘ 𝑋 ) ) ) |
| 201 |
2 198 200
|
elabd |
⊢ ( 𝜑 → 𝑋 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ) |
| 202 |
201
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ) |
| 203 |
43 202
|
unssd |
⊢ ( 𝜑 → ( 𝐵 ∪ { 𝑋 } ) ⊆ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ) |
| 204 |
6 8 12 13 14 188 203
|
rgspnmin |
⊢ ( 𝜑 → ( ( RingSpan ‘ ℂfld ) ‘ ( 𝐵 ∪ { 𝑋 } ) ) ⊆ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ) |
| 205 |
204
|
sseld |
⊢ ( 𝜑 → ( 𝑉 ∈ ( ( RingSpan ‘ ℂfld ) ‘ ( 𝐵 ∪ { 𝑋 } ) ) → 𝑉 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ) ) |
| 206 |
|
fvex |
⊢ ( 𝑝 ‘ 𝑋 ) ∈ V |
| 207 |
|
eleq1 |
⊢ ( 𝑉 = ( 𝑝 ‘ 𝑋 ) → ( 𝑉 ∈ V ↔ ( 𝑝 ‘ 𝑋 ) ∈ V ) ) |
| 208 |
206 207
|
mpbiri |
⊢ ( 𝑉 = ( 𝑝 ‘ 𝑋 ) → 𝑉 ∈ V ) |
| 209 |
208
|
rexlimivw |
⊢ ( ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑉 = ( 𝑝 ‘ 𝑋 ) → 𝑉 ∈ V ) |
| 210 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑉 → ( 𝑎 = ( 𝑝 ‘ 𝑋 ) ↔ 𝑉 = ( 𝑝 ‘ 𝑋 ) ) ) |
| 211 |
210
|
rexbidv |
⊢ ( 𝑎 = 𝑉 → ( ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) ↔ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑉 = ( 𝑝 ‘ 𝑋 ) ) ) |
| 212 |
209 211
|
elab3 |
⊢ ( 𝑉 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑎 = ( 𝑝 ‘ 𝑋 ) } ↔ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑉 = ( 𝑝 ‘ 𝑋 ) ) |
| 213 |
205 212
|
imbitrdi |
⊢ ( 𝜑 → ( 𝑉 ∈ ( ( RingSpan ‘ ℂfld ) ‘ ( 𝐵 ∪ { 𝑋 } ) ) → ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑉 = ( 𝑝 ‘ 𝑋 ) ) ) |
| 214 |
6 8 12 13 14
|
rgspncl |
⊢ ( 𝜑 → ( ( RingSpan ‘ ℂfld ) ‘ ( 𝐵 ∪ { 𝑋 } ) ) ∈ ( SubRing ‘ ℂfld ) ) |
| 215 |
214
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝐵 ) ) → ( ( RingSpan ‘ ℂfld ) ‘ ( 𝐵 ∪ { 𝑋 } ) ) ∈ ( SubRing ‘ ℂfld ) ) |
| 216 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝐵 ) ) → 𝑝 ∈ ( Poly ‘ 𝐵 ) ) |
| 217 |
6 8 12 13 14
|
rgspnssid |
⊢ ( 𝜑 → ( 𝐵 ∪ { 𝑋 } ) ⊆ ( ( RingSpan ‘ ℂfld ) ‘ ( 𝐵 ∪ { 𝑋 } ) ) ) |
| 218 |
217
|
unssbd |
⊢ ( 𝜑 → { 𝑋 } ⊆ ( ( RingSpan ‘ ℂfld ) ‘ ( 𝐵 ∪ { 𝑋 } ) ) ) |
| 219 |
|
snidg |
⊢ ( 𝑋 ∈ ℂ → 𝑋 ∈ { 𝑋 } ) |
| 220 |
2 219
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ { 𝑋 } ) |
| 221 |
218 220
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ( ( RingSpan ‘ ℂfld ) ‘ ( 𝐵 ∪ { 𝑋 } ) ) ) |
| 222 |
221
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝐵 ) ) → 𝑋 ∈ ( ( RingSpan ‘ ℂfld ) ‘ ( 𝐵 ∪ { 𝑋 } ) ) ) |
| 223 |
217
|
unssad |
⊢ ( 𝜑 → 𝐵 ⊆ ( ( RingSpan ‘ ℂfld ) ‘ ( 𝐵 ∪ { 𝑋 } ) ) ) |
| 224 |
223
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝐵 ) ) → 𝐵 ⊆ ( ( RingSpan ‘ ℂfld ) ‘ ( 𝐵 ∪ { 𝑋 } ) ) ) |
| 225 |
215 216 222 224
|
cnsrplycl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝐵 ) ) → ( 𝑝 ‘ 𝑋 ) ∈ ( ( RingSpan ‘ ℂfld ) ‘ ( 𝐵 ∪ { 𝑋 } ) ) ) |
| 226 |
|
eleq1 |
⊢ ( 𝑉 = ( 𝑝 ‘ 𝑋 ) → ( 𝑉 ∈ ( ( RingSpan ‘ ℂfld ) ‘ ( 𝐵 ∪ { 𝑋 } ) ) ↔ ( 𝑝 ‘ 𝑋 ) ∈ ( ( RingSpan ‘ ℂfld ) ‘ ( 𝐵 ∪ { 𝑋 } ) ) ) ) |
| 227 |
225 226
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Poly ‘ 𝐵 ) ) → ( 𝑉 = ( 𝑝 ‘ 𝑋 ) → 𝑉 ∈ ( ( RingSpan ‘ ℂfld ) ‘ ( 𝐵 ∪ { 𝑋 } ) ) ) ) |
| 228 |
227
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑉 = ( 𝑝 ‘ 𝑋 ) → 𝑉 ∈ ( ( RingSpan ‘ ℂfld ) ‘ ( 𝐵 ∪ { 𝑋 } ) ) ) ) |
| 229 |
213 228
|
impbid |
⊢ ( 𝜑 → ( 𝑉 ∈ ( ( RingSpan ‘ ℂfld ) ‘ ( 𝐵 ∪ { 𝑋 } ) ) ↔ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑉 = ( 𝑝 ‘ 𝑋 ) ) ) |
| 230 |
4 229
|
bitrd |
⊢ ( 𝜑 → ( 𝑉 ∈ 𝑆 ↔ ∃ 𝑝 ∈ ( Poly ‘ 𝐵 ) 𝑉 = ( 𝑝 ‘ 𝑋 ) ) ) |