Step |
Hyp |
Ref |
Expression |
1 |
|
dfrhm2 |
⊢ RingHom = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) ) |
2 |
1
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → RingHom = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) ) ) |
3 |
|
oveq12 |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( 𝑟 GrpHom 𝑠 ) = ( 𝑅 GrpHom 𝑆 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑅 ) ) |
5 |
|
fveq2 |
⊢ ( 𝑠 = 𝑆 → ( mulGrp ‘ 𝑠 ) = ( mulGrp ‘ 𝑆 ) ) |
6 |
4 5
|
oveqan12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) = ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) |
7 |
3 6
|
ineq12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) = ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ) → ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) = ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) |
9 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → 𝑅 ∈ Ring ) |
10 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → 𝑆 ∈ Ring ) |
11 |
|
ovex |
⊢ ( 𝑅 GrpHom 𝑆 ) ∈ V |
12 |
11
|
inex1 |
⊢ ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ∈ V |
13 |
12
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ∈ V ) |
14 |
2 8 9 10 13
|
ovmpod |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → ( 𝑅 RingHom 𝑆 ) = ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ) |