Metamath Proof Explorer


Theorem rhmval

Description: The ring homomorphisms between two rings. (Contributed by AV, 1-Mar-2020)

Ref Expression
Assertion rhmval ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → ( 𝑅 RingHom 𝑆 ) = ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) )

Proof

Step Hyp Ref Expression
1 dfrhm2 RingHom = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) )
2 1 a1i ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → RingHom = ( 𝑟 ∈ Ring , 𝑠 ∈ Ring ↦ ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) ) )
3 oveq12 ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → ( 𝑟 GrpHom 𝑠 ) = ( 𝑅 GrpHom 𝑆 ) )
4 fveq2 ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑅 ) )
5 fveq2 ( 𝑠 = 𝑆 → ( mulGrp ‘ 𝑠 ) = ( mulGrp ‘ 𝑆 ) )
6 4 5 oveqan12d ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) = ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) )
7 3 6 ineq12d ( ( 𝑟 = 𝑅𝑠 = 𝑆 ) → ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) = ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) )
8 7 adantl ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) ∧ ( 𝑟 = 𝑅𝑠 = 𝑆 ) ) → ( ( 𝑟 GrpHom 𝑠 ) ∩ ( ( mulGrp ‘ 𝑟 ) MndHom ( mulGrp ‘ 𝑠 ) ) ) = ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) )
9 simpl ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → 𝑅 ∈ Ring )
10 simpr ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → 𝑆 ∈ Ring )
11 ovex ( 𝑅 GrpHom 𝑆 ) ∈ V
12 11 inex1 ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ∈ V
13 12 a1i ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) ∈ V )
14 2 8 9 10 13 ovmpod ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Ring ) → ( 𝑅 RingHom 𝑆 ) = ( ( 𝑅 GrpHom 𝑆 ) ∩ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) )