Step |
Hyp |
Ref |
Expression |
1 |
|
dfrhm2 |
|- RingHom = ( r e. Ring , s e. Ring |-> ( ( r GrpHom s ) i^i ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) ) ) |
2 |
1
|
a1i |
|- ( ( R e. Ring /\ S e. Ring ) -> RingHom = ( r e. Ring , s e. Ring |-> ( ( r GrpHom s ) i^i ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) ) ) ) |
3 |
|
oveq12 |
|- ( ( r = R /\ s = S ) -> ( r GrpHom s ) = ( R GrpHom S ) ) |
4 |
|
fveq2 |
|- ( r = R -> ( mulGrp ` r ) = ( mulGrp ` R ) ) |
5 |
|
fveq2 |
|- ( s = S -> ( mulGrp ` s ) = ( mulGrp ` S ) ) |
6 |
4 5
|
oveqan12d |
|- ( ( r = R /\ s = S ) -> ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) = ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) |
7 |
3 6
|
ineq12d |
|- ( ( r = R /\ s = S ) -> ( ( r GrpHom s ) i^i ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) ) = ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) |
8 |
7
|
adantl |
|- ( ( ( R e. Ring /\ S e. Ring ) /\ ( r = R /\ s = S ) ) -> ( ( r GrpHom s ) i^i ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) ) = ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) |
9 |
|
simpl |
|- ( ( R e. Ring /\ S e. Ring ) -> R e. Ring ) |
10 |
|
simpr |
|- ( ( R e. Ring /\ S e. Ring ) -> S e. Ring ) |
11 |
|
ovex |
|- ( R GrpHom S ) e. _V |
12 |
11
|
inex1 |
|- ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) e. _V |
13 |
12
|
a1i |
|- ( ( R e. Ring /\ S e. Ring ) -> ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) e. _V ) |
14 |
2 8 9 10 13
|
ovmpod |
|- ( ( R e. Ring /\ S e. Ring ) -> ( R RingHom S ) = ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) |