Metamath Proof Explorer


Theorem rhmval

Description: The ring homomorphisms between two rings. (Contributed by AV, 1-Mar-2020)

Ref Expression
Assertion rhmval R Ring S Ring R RingHom S = R GrpHom S mulGrp R MndHom mulGrp S

Proof

Step Hyp Ref Expression
1 dfrhm2 RingHom = r Ring , s Ring r GrpHom s mulGrp r MndHom mulGrp s
2 1 a1i R Ring S Ring RingHom = r Ring , s Ring r GrpHom s mulGrp r MndHom mulGrp s
3 oveq12 r = R s = S r GrpHom s = R GrpHom S
4 fveq2 r = R mulGrp r = mulGrp R
5 fveq2 s = S mulGrp s = mulGrp S
6 4 5 oveqan12d r = R s = S mulGrp r MndHom mulGrp s = mulGrp R MndHom mulGrp S
7 3 6 ineq12d r = R s = S r GrpHom s mulGrp r MndHom mulGrp s = R GrpHom S mulGrp R MndHom mulGrp S
8 7 adantl R Ring S Ring r = R s = S r GrpHom s mulGrp r MndHom mulGrp s = R GrpHom S mulGrp R MndHom mulGrp S
9 simpl R Ring S Ring R Ring
10 simpr R Ring S Ring S Ring
11 ovex R GrpHom S V
12 11 inex1 R GrpHom S mulGrp R MndHom mulGrp S V
13 12 a1i R Ring S Ring R GrpHom S mulGrp R MndHom mulGrp S V
14 2 8 9 10 13 ovmpod R Ring S Ring R RingHom S = R GrpHom S mulGrp R MndHom mulGrp S