Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Rings (extension)
Ring homomorphisms (extension)
rhmval
Next ⟩
rhmisrnghm
Metamath Proof Explorer
Ascii
Unicode
Theorem
rhmval
Description:
The ring homomorphisms between two rings.
(Contributed by
AV
, 1-Mar-2020)
Ref
Expression
Assertion
rhmval
⊢
R
∈
Ring
∧
S
∈
Ring
→
R
RingHom
S
=
R
GrpHom
S
∩
mulGrp
R
MndHom
mulGrp
S
Proof
Step
Hyp
Ref
Expression
1
dfrhm2
⊢
RingHom
=
r
∈
Ring
,
s
∈
Ring
⟼
r
GrpHom
s
∩
mulGrp
r
MndHom
mulGrp
s
2
1
a1i
⊢
R
∈
Ring
∧
S
∈
Ring
→
RingHom
=
r
∈
Ring
,
s
∈
Ring
⟼
r
GrpHom
s
∩
mulGrp
r
MndHom
mulGrp
s
3
oveq12
⊢
r
=
R
∧
s
=
S
→
r
GrpHom
s
=
R
GrpHom
S
4
fveq2
⊢
r
=
R
→
mulGrp
r
=
mulGrp
R
5
fveq2
⊢
s
=
S
→
mulGrp
s
=
mulGrp
S
6
4
5
oveqan12d
⊢
r
=
R
∧
s
=
S
→
mulGrp
r
MndHom
mulGrp
s
=
mulGrp
R
MndHom
mulGrp
S
7
3
6
ineq12d
⊢
r
=
R
∧
s
=
S
→
r
GrpHom
s
∩
mulGrp
r
MndHom
mulGrp
s
=
R
GrpHom
S
∩
mulGrp
R
MndHom
mulGrp
S
8
7
adantl
⊢
R
∈
Ring
∧
S
∈
Ring
∧
r
=
R
∧
s
=
S
→
r
GrpHom
s
∩
mulGrp
r
MndHom
mulGrp
s
=
R
GrpHom
S
∩
mulGrp
R
MndHom
mulGrp
S
9
simpl
⊢
R
∈
Ring
∧
S
∈
Ring
→
R
∈
Ring
10
simpr
⊢
R
∈
Ring
∧
S
∈
Ring
→
S
∈
Ring
11
ovex
⊢
R
GrpHom
S
∈
V
12
11
inex1
⊢
R
GrpHom
S
∩
mulGrp
R
MndHom
mulGrp
S
∈
V
13
12
a1i
⊢
R
∈
Ring
∧
S
∈
Ring
→
R
GrpHom
S
∩
mulGrp
R
MndHom
mulGrp
S
∈
V
14
2
8
9
10
13
ovmpod
⊢
R
∈
Ring
∧
S
∈
Ring
→
R
RingHom
S
=
R
GrpHom
S
∩
mulGrp
R
MndHom
mulGrp
S