Step |
Hyp |
Ref |
Expression |
1 |
|
rlimcnp3.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
2 |
|
rlimcnp3.r |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑆 ∈ ℂ ) |
3 |
|
rlimcnp3.s |
⊢ ( 𝑦 = ( 1 / 𝑥 ) → 𝑆 = 𝑅 ) |
4 |
|
rlimcnp3.j |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
5 |
|
rlimcnp3.k |
⊢ 𝐾 = ( 𝐽 ↾t ( 0 [,) +∞ ) ) |
6 |
|
ssidd |
⊢ ( 𝜑 → ( 0 [,) +∞ ) ⊆ ( 0 [,) +∞ ) ) |
7 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
8 |
7
|
a1i |
⊢ ( 𝜑 → 0 ∈ ( 0 [,) +∞ ) ) |
9 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
10 |
9
|
a1i |
⊢ ( 𝜑 → ℝ+ ⊆ ℝ ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ+ ) |
12 |
|
rpreccl |
⊢ ( 𝑦 ∈ ℝ+ → ( 1 / 𝑦 ) ∈ ℝ+ ) |
13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 1 / 𝑦 ) ∈ ℝ+ ) |
14 |
13
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 1 / 𝑦 ) ∈ ℝ ) |
15 |
13
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 0 ≤ ( 1 / 𝑦 ) ) |
16 |
|
elrege0 |
⊢ ( ( 1 / 𝑦 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 1 / 𝑦 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝑦 ) ) ) |
17 |
14 15 16
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 1 / 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
18 |
11 17
|
2thd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 𝑦 ∈ ℝ+ ↔ ( 1 / 𝑦 ) ∈ ( 0 [,) +∞ ) ) ) |
19 |
6 8 10 1 2 18 3 4 5
|
rlimcnp2 |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℝ+ ↦ 𝑆 ) ⇝𝑟 𝐶 ↔ ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ if ( 𝑥 = 0 , 𝐶 , 𝑅 ) ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ 0 ) ) ) |