Metamath Proof Explorer


Theorem rlimcnp3

Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function S ( y ) = R ( 1 / y ) at zero. (Contributed by Mario Carneiro, 1-Mar-2015)

Ref Expression
Hypotheses rlimcnp3.c ( 𝜑𝐶 ∈ ℂ )
rlimcnp3.r ( ( 𝜑𝑦 ∈ ℝ+ ) → 𝑆 ∈ ℂ )
rlimcnp3.s ( 𝑦 = ( 1 / 𝑥 ) → 𝑆 = 𝑅 )
rlimcnp3.j 𝐽 = ( TopOpen ‘ ℂfld )
rlimcnp3.k 𝐾 = ( 𝐽t ( 0 [,) +∞ ) )
Assertion rlimcnp3 ( 𝜑 → ( ( 𝑦 ∈ ℝ+𝑆 ) ⇝𝑟 𝐶 ↔ ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ if ( 𝑥 = 0 , 𝐶 , 𝑅 ) ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ 0 ) ) )

Proof

Step Hyp Ref Expression
1 rlimcnp3.c ( 𝜑𝐶 ∈ ℂ )
2 rlimcnp3.r ( ( 𝜑𝑦 ∈ ℝ+ ) → 𝑆 ∈ ℂ )
3 rlimcnp3.s ( 𝑦 = ( 1 / 𝑥 ) → 𝑆 = 𝑅 )
4 rlimcnp3.j 𝐽 = ( TopOpen ‘ ℂfld )
5 rlimcnp3.k 𝐾 = ( 𝐽t ( 0 [,) +∞ ) )
6 ssidd ( 𝜑 → ( 0 [,) +∞ ) ⊆ ( 0 [,) +∞ ) )
7 0e0icopnf 0 ∈ ( 0 [,) +∞ )
8 7 a1i ( 𝜑 → 0 ∈ ( 0 [,) +∞ ) )
9 rpssre + ⊆ ℝ
10 9 a1i ( 𝜑 → ℝ+ ⊆ ℝ )
11 simpr ( ( 𝜑𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ+ )
12 rpreccl ( 𝑦 ∈ ℝ+ → ( 1 / 𝑦 ) ∈ ℝ+ )
13 12 adantl ( ( 𝜑𝑦 ∈ ℝ+ ) → ( 1 / 𝑦 ) ∈ ℝ+ )
14 13 rpred ( ( 𝜑𝑦 ∈ ℝ+ ) → ( 1 / 𝑦 ) ∈ ℝ )
15 13 rpge0d ( ( 𝜑𝑦 ∈ ℝ+ ) → 0 ≤ ( 1 / 𝑦 ) )
16 elrege0 ( ( 1 / 𝑦 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 1 / 𝑦 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝑦 ) ) )
17 14 15 16 sylanbrc ( ( 𝜑𝑦 ∈ ℝ+ ) → ( 1 / 𝑦 ) ∈ ( 0 [,) +∞ ) )
18 11 17 2thd ( ( 𝜑𝑦 ∈ ℝ+ ) → ( 𝑦 ∈ ℝ+ ↔ ( 1 / 𝑦 ) ∈ ( 0 [,) +∞ ) ) )
19 6 8 10 1 2 18 3 4 5 rlimcnp2 ( 𝜑 → ( ( 𝑦 ∈ ℝ+𝑆 ) ⇝𝑟 𝐶 ↔ ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ if ( 𝑥 = 0 , 𝐶 , 𝑅 ) ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ 0 ) ) )