Metamath Proof Explorer


Theorem rlimcnp3

Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function S ( y ) = R ( 1 / y ) at zero. (Contributed by Mario Carneiro, 1-Mar-2015)

Ref Expression
Hypotheses rlimcnp3.c
|- ( ph -> C e. CC )
rlimcnp3.r
|- ( ( ph /\ y e. RR+ ) -> S e. CC )
rlimcnp3.s
|- ( y = ( 1 / x ) -> S = R )
rlimcnp3.j
|- J = ( TopOpen ` CCfld )
rlimcnp3.k
|- K = ( J |`t ( 0 [,) +oo ) )
Assertion rlimcnp3
|- ( ph -> ( ( y e. RR+ |-> S ) ~~>r C <-> ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , C , R ) ) e. ( ( K CnP J ) ` 0 ) ) )

Proof

Step Hyp Ref Expression
1 rlimcnp3.c
 |-  ( ph -> C e. CC )
2 rlimcnp3.r
 |-  ( ( ph /\ y e. RR+ ) -> S e. CC )
3 rlimcnp3.s
 |-  ( y = ( 1 / x ) -> S = R )
4 rlimcnp3.j
 |-  J = ( TopOpen ` CCfld )
5 rlimcnp3.k
 |-  K = ( J |`t ( 0 [,) +oo ) )
6 ssidd
 |-  ( ph -> ( 0 [,) +oo ) C_ ( 0 [,) +oo ) )
7 0e0icopnf
 |-  0 e. ( 0 [,) +oo )
8 7 a1i
 |-  ( ph -> 0 e. ( 0 [,) +oo ) )
9 rpssre
 |-  RR+ C_ RR
10 9 a1i
 |-  ( ph -> RR+ C_ RR )
11 simpr
 |-  ( ( ph /\ y e. RR+ ) -> y e. RR+ )
12 rpreccl
 |-  ( y e. RR+ -> ( 1 / y ) e. RR+ )
13 12 adantl
 |-  ( ( ph /\ y e. RR+ ) -> ( 1 / y ) e. RR+ )
14 13 rpred
 |-  ( ( ph /\ y e. RR+ ) -> ( 1 / y ) e. RR )
15 13 rpge0d
 |-  ( ( ph /\ y e. RR+ ) -> 0 <_ ( 1 / y ) )
16 elrege0
 |-  ( ( 1 / y ) e. ( 0 [,) +oo ) <-> ( ( 1 / y ) e. RR /\ 0 <_ ( 1 / y ) ) )
17 14 15 16 sylanbrc
 |-  ( ( ph /\ y e. RR+ ) -> ( 1 / y ) e. ( 0 [,) +oo ) )
18 11 17 2thd
 |-  ( ( ph /\ y e. RR+ ) -> ( y e. RR+ <-> ( 1 / y ) e. ( 0 [,) +oo ) ) )
19 6 8 10 1 2 18 3 4 5 rlimcnp2
 |-  ( ph -> ( ( y e. RR+ |-> S ) ~~>r C <-> ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , C , R ) ) e. ( ( K CnP J ) ` 0 ) ) )