Step |
Hyp |
Ref |
Expression |
1 |
|
rlimcnp3.c |
|- ( ph -> C e. CC ) |
2 |
|
rlimcnp3.r |
|- ( ( ph /\ y e. RR+ ) -> S e. CC ) |
3 |
|
rlimcnp3.s |
|- ( y = ( 1 / x ) -> S = R ) |
4 |
|
rlimcnp3.j |
|- J = ( TopOpen ` CCfld ) |
5 |
|
rlimcnp3.k |
|- K = ( J |`t ( 0 [,) +oo ) ) |
6 |
|
ssidd |
|- ( ph -> ( 0 [,) +oo ) C_ ( 0 [,) +oo ) ) |
7 |
|
0e0icopnf |
|- 0 e. ( 0 [,) +oo ) |
8 |
7
|
a1i |
|- ( ph -> 0 e. ( 0 [,) +oo ) ) |
9 |
|
rpssre |
|- RR+ C_ RR |
10 |
9
|
a1i |
|- ( ph -> RR+ C_ RR ) |
11 |
|
simpr |
|- ( ( ph /\ y e. RR+ ) -> y e. RR+ ) |
12 |
|
rpreccl |
|- ( y e. RR+ -> ( 1 / y ) e. RR+ ) |
13 |
12
|
adantl |
|- ( ( ph /\ y e. RR+ ) -> ( 1 / y ) e. RR+ ) |
14 |
13
|
rpred |
|- ( ( ph /\ y e. RR+ ) -> ( 1 / y ) e. RR ) |
15 |
13
|
rpge0d |
|- ( ( ph /\ y e. RR+ ) -> 0 <_ ( 1 / y ) ) |
16 |
|
elrege0 |
|- ( ( 1 / y ) e. ( 0 [,) +oo ) <-> ( ( 1 / y ) e. RR /\ 0 <_ ( 1 / y ) ) ) |
17 |
14 15 16
|
sylanbrc |
|- ( ( ph /\ y e. RR+ ) -> ( 1 / y ) e. ( 0 [,) +oo ) ) |
18 |
11 17
|
2thd |
|- ( ( ph /\ y e. RR+ ) -> ( y e. RR+ <-> ( 1 / y ) e. ( 0 [,) +oo ) ) ) |
19 |
6 8 10 1 2 18 3 4 5
|
rlimcnp2 |
|- ( ph -> ( ( y e. RR+ |-> S ) ~~>r C <-> ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , C , R ) ) e. ( ( K CnP J ) ` 0 ) ) ) |