| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rlimcnp2.a |  |-  ( ph -> A C_ ( 0 [,) +oo ) ) | 
						
							| 2 |  | rlimcnp2.0 |  |-  ( ph -> 0 e. A ) | 
						
							| 3 |  | rlimcnp2.b |  |-  ( ph -> B C_ RR ) | 
						
							| 4 |  | rlimcnp2.c |  |-  ( ph -> C e. CC ) | 
						
							| 5 |  | rlimcnp2.r |  |-  ( ( ph /\ y e. B ) -> S e. CC ) | 
						
							| 6 |  | rlimcnp2.d |  |-  ( ( ph /\ y e. RR+ ) -> ( y e. B <-> ( 1 / y ) e. A ) ) | 
						
							| 7 |  | rlimcnp2.s |  |-  ( y = ( 1 / x ) -> S = R ) | 
						
							| 8 |  | rlimcnp2.j |  |-  J = ( TopOpen ` CCfld ) | 
						
							| 9 |  | rlimcnp2.k |  |-  K = ( J |`t A ) | 
						
							| 10 |  | inss1 |  |-  ( B i^i ( 1 [,) +oo ) ) C_ B | 
						
							| 11 |  | resmpt |  |-  ( ( B i^i ( 1 [,) +oo ) ) C_ B -> ( ( y e. B |-> S ) |` ( B i^i ( 1 [,) +oo ) ) ) = ( y e. ( B i^i ( 1 [,) +oo ) ) |-> S ) ) | 
						
							| 12 | 10 11 | mp1i |  |-  ( ph -> ( ( y e. B |-> S ) |` ( B i^i ( 1 [,) +oo ) ) ) = ( y e. ( B i^i ( 1 [,) +oo ) ) |-> S ) ) | 
						
							| 13 |  | 0xr |  |-  0 e. RR* | 
						
							| 14 |  | 0lt1 |  |-  0 < 1 | 
						
							| 15 |  | df-ioo |  |-  (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) | 
						
							| 16 |  | df-ico |  |-  [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) | 
						
							| 17 |  | xrltletr |  |-  ( ( 0 e. RR* /\ 1 e. RR* /\ w e. RR* ) -> ( ( 0 < 1 /\ 1 <_ w ) -> 0 < w ) ) | 
						
							| 18 | 15 16 17 | ixxss1 |  |-  ( ( 0 e. RR* /\ 0 < 1 ) -> ( 1 [,) +oo ) C_ ( 0 (,) +oo ) ) | 
						
							| 19 | 13 14 18 | mp2an |  |-  ( 1 [,) +oo ) C_ ( 0 (,) +oo ) | 
						
							| 20 |  | ioorp |  |-  ( 0 (,) +oo ) = RR+ | 
						
							| 21 | 19 20 | sseqtri |  |-  ( 1 [,) +oo ) C_ RR+ | 
						
							| 22 |  | sslin |  |-  ( ( 1 [,) +oo ) C_ RR+ -> ( B i^i ( 1 [,) +oo ) ) C_ ( B i^i RR+ ) ) | 
						
							| 23 | 21 22 | ax-mp |  |-  ( B i^i ( 1 [,) +oo ) ) C_ ( B i^i RR+ ) | 
						
							| 24 |  | resmpt |  |-  ( ( B i^i ( 1 [,) +oo ) ) C_ ( B i^i RR+ ) -> ( ( y e. ( B i^i RR+ ) |-> S ) |` ( B i^i ( 1 [,) +oo ) ) ) = ( y e. ( B i^i ( 1 [,) +oo ) ) |-> S ) ) | 
						
							| 25 | 23 24 | mp1i |  |-  ( ph -> ( ( y e. ( B i^i RR+ ) |-> S ) |` ( B i^i ( 1 [,) +oo ) ) ) = ( y e. ( B i^i ( 1 [,) +oo ) ) |-> S ) ) | 
						
							| 26 | 12 25 | eqtr4d |  |-  ( ph -> ( ( y e. B |-> S ) |` ( B i^i ( 1 [,) +oo ) ) ) = ( ( y e. ( B i^i RR+ ) |-> S ) |` ( B i^i ( 1 [,) +oo ) ) ) ) | 
						
							| 27 |  | resres |  |-  ( ( ( y e. B |-> S ) |` B ) |` ( 1 [,) +oo ) ) = ( ( y e. B |-> S ) |` ( B i^i ( 1 [,) +oo ) ) ) | 
						
							| 28 |  | resres |  |-  ( ( ( y e. ( B i^i RR+ ) |-> S ) |` B ) |` ( 1 [,) +oo ) ) = ( ( y e. ( B i^i RR+ ) |-> S ) |` ( B i^i ( 1 [,) +oo ) ) ) | 
						
							| 29 | 26 27 28 | 3eqtr4g |  |-  ( ph -> ( ( ( y e. B |-> S ) |` B ) |` ( 1 [,) +oo ) ) = ( ( ( y e. ( B i^i RR+ ) |-> S ) |` B ) |` ( 1 [,) +oo ) ) ) | 
						
							| 30 | 5 | fmpttd |  |-  ( ph -> ( y e. B |-> S ) : B --> CC ) | 
						
							| 31 | 30 | ffnd |  |-  ( ph -> ( y e. B |-> S ) Fn B ) | 
						
							| 32 |  | fnresdm |  |-  ( ( y e. B |-> S ) Fn B -> ( ( y e. B |-> S ) |` B ) = ( y e. B |-> S ) ) | 
						
							| 33 | 31 32 | syl |  |-  ( ph -> ( ( y e. B |-> S ) |` B ) = ( y e. B |-> S ) ) | 
						
							| 34 | 33 | reseq1d |  |-  ( ph -> ( ( ( y e. B |-> S ) |` B ) |` ( 1 [,) +oo ) ) = ( ( y e. B |-> S ) |` ( 1 [,) +oo ) ) ) | 
						
							| 35 |  | elinel1 |  |-  ( y e. ( B i^i RR+ ) -> y e. B ) | 
						
							| 36 | 35 5 | sylan2 |  |-  ( ( ph /\ y e. ( B i^i RR+ ) ) -> S e. CC ) | 
						
							| 37 | 36 | fmpttd |  |-  ( ph -> ( y e. ( B i^i RR+ ) |-> S ) : ( B i^i RR+ ) --> CC ) | 
						
							| 38 |  | frel |  |-  ( ( y e. ( B i^i RR+ ) |-> S ) : ( B i^i RR+ ) --> CC -> Rel ( y e. ( B i^i RR+ ) |-> S ) ) | 
						
							| 39 | 37 38 | syl |  |-  ( ph -> Rel ( y e. ( B i^i RR+ ) |-> S ) ) | 
						
							| 40 |  | eqid |  |-  ( y e. ( B i^i RR+ ) |-> S ) = ( y e. ( B i^i RR+ ) |-> S ) | 
						
							| 41 | 40 36 | dmmptd |  |-  ( ph -> dom ( y e. ( B i^i RR+ ) |-> S ) = ( B i^i RR+ ) ) | 
						
							| 42 |  | inss1 |  |-  ( B i^i RR+ ) C_ B | 
						
							| 43 | 41 42 | eqsstrdi |  |-  ( ph -> dom ( y e. ( B i^i RR+ ) |-> S ) C_ B ) | 
						
							| 44 |  | relssres |  |-  ( ( Rel ( y e. ( B i^i RR+ ) |-> S ) /\ dom ( y e. ( B i^i RR+ ) |-> S ) C_ B ) -> ( ( y e. ( B i^i RR+ ) |-> S ) |` B ) = ( y e. ( B i^i RR+ ) |-> S ) ) | 
						
							| 45 | 39 43 44 | syl2anc |  |-  ( ph -> ( ( y e. ( B i^i RR+ ) |-> S ) |` B ) = ( y e. ( B i^i RR+ ) |-> S ) ) | 
						
							| 46 | 45 | reseq1d |  |-  ( ph -> ( ( ( y e. ( B i^i RR+ ) |-> S ) |` B ) |` ( 1 [,) +oo ) ) = ( ( y e. ( B i^i RR+ ) |-> S ) |` ( 1 [,) +oo ) ) ) | 
						
							| 47 | 29 34 46 | 3eqtr3d |  |-  ( ph -> ( ( y e. B |-> S ) |` ( 1 [,) +oo ) ) = ( ( y e. ( B i^i RR+ ) |-> S ) |` ( 1 [,) +oo ) ) ) | 
						
							| 48 | 47 | breq1d |  |-  ( ph -> ( ( ( y e. B |-> S ) |` ( 1 [,) +oo ) ) ~~>r C <-> ( ( y e. ( B i^i RR+ ) |-> S ) |` ( 1 [,) +oo ) ) ~~>r C ) ) | 
						
							| 49 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 50 | 30 3 49 | rlimresb |  |-  ( ph -> ( ( y e. B |-> S ) ~~>r C <-> ( ( y e. B |-> S ) |` ( 1 [,) +oo ) ) ~~>r C ) ) | 
						
							| 51 | 42 3 | sstrid |  |-  ( ph -> ( B i^i RR+ ) C_ RR ) | 
						
							| 52 | 37 51 49 | rlimresb |  |-  ( ph -> ( ( y e. ( B i^i RR+ ) |-> S ) ~~>r C <-> ( ( y e. ( B i^i RR+ ) |-> S ) |` ( 1 [,) +oo ) ) ~~>r C ) ) | 
						
							| 53 | 48 50 52 | 3bitr4d |  |-  ( ph -> ( ( y e. B |-> S ) ~~>r C <-> ( y e. ( B i^i RR+ ) |-> S ) ~~>r C ) ) | 
						
							| 54 |  | inss2 |  |-  ( B i^i RR+ ) C_ RR+ | 
						
							| 55 | 54 | a1i |  |-  ( ph -> ( B i^i RR+ ) C_ RR+ ) | 
						
							| 56 | 55 | sselda |  |-  ( ( ph /\ y e. ( B i^i RR+ ) ) -> y e. RR+ ) | 
						
							| 57 | 56 | rpreccld |  |-  ( ( ph /\ y e. ( B i^i RR+ ) ) -> ( 1 / y ) e. RR+ ) | 
						
							| 58 | 57 | rpne0d |  |-  ( ( ph /\ y e. ( B i^i RR+ ) ) -> ( 1 / y ) =/= 0 ) | 
						
							| 59 | 58 | neneqd |  |-  ( ( ph /\ y e. ( B i^i RR+ ) ) -> -. ( 1 / y ) = 0 ) | 
						
							| 60 | 59 | iffalsed |  |-  ( ( ph /\ y e. ( B i^i RR+ ) ) -> if ( ( 1 / y ) = 0 , C , [_ ( 1 / y ) / x ]_ R ) = [_ ( 1 / y ) / x ]_ R ) | 
						
							| 61 |  | oveq2 |  |-  ( x = ( 1 / y ) -> ( 1 / x ) = ( 1 / ( 1 / y ) ) ) | 
						
							| 62 |  | rpcnne0 |  |-  ( y e. RR+ -> ( y e. CC /\ y =/= 0 ) ) | 
						
							| 63 |  | recrec |  |-  ( ( y e. CC /\ y =/= 0 ) -> ( 1 / ( 1 / y ) ) = y ) | 
						
							| 64 | 56 62 63 | 3syl |  |-  ( ( ph /\ y e. ( B i^i RR+ ) ) -> ( 1 / ( 1 / y ) ) = y ) | 
						
							| 65 | 61 64 | sylan9eqr |  |-  ( ( ( ph /\ y e. ( B i^i RR+ ) ) /\ x = ( 1 / y ) ) -> ( 1 / x ) = y ) | 
						
							| 66 | 65 | eqcomd |  |-  ( ( ( ph /\ y e. ( B i^i RR+ ) ) /\ x = ( 1 / y ) ) -> y = ( 1 / x ) ) | 
						
							| 67 | 66 7 | syl |  |-  ( ( ( ph /\ y e. ( B i^i RR+ ) ) /\ x = ( 1 / y ) ) -> S = R ) | 
						
							| 68 | 67 | eqcomd |  |-  ( ( ( ph /\ y e. ( B i^i RR+ ) ) /\ x = ( 1 / y ) ) -> R = S ) | 
						
							| 69 | 57 68 | csbied |  |-  ( ( ph /\ y e. ( B i^i RR+ ) ) -> [_ ( 1 / y ) / x ]_ R = S ) | 
						
							| 70 | 60 69 | eqtrd |  |-  ( ( ph /\ y e. ( B i^i RR+ ) ) -> if ( ( 1 / y ) = 0 , C , [_ ( 1 / y ) / x ]_ R ) = S ) | 
						
							| 71 | 70 | mpteq2dva |  |-  ( ph -> ( y e. ( B i^i RR+ ) |-> if ( ( 1 / y ) = 0 , C , [_ ( 1 / y ) / x ]_ R ) ) = ( y e. ( B i^i RR+ ) |-> S ) ) | 
						
							| 72 | 71 | breq1d |  |-  ( ph -> ( ( y e. ( B i^i RR+ ) |-> if ( ( 1 / y ) = 0 , C , [_ ( 1 / y ) / x ]_ R ) ) ~~>r C <-> ( y e. ( B i^i RR+ ) |-> S ) ~~>r C ) ) | 
						
							| 73 | 4 | ad2antrr |  |-  ( ( ( ph /\ w e. A ) /\ w = 0 ) -> C e. CC ) | 
						
							| 74 | 1 | sselda |  |-  ( ( ph /\ w e. A ) -> w e. ( 0 [,) +oo ) ) | 
						
							| 75 |  | 0re |  |-  0 e. RR | 
						
							| 76 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 77 |  | elico2 |  |-  ( ( 0 e. RR /\ +oo e. RR* ) -> ( w e. ( 0 [,) +oo ) <-> ( w e. RR /\ 0 <_ w /\ w < +oo ) ) ) | 
						
							| 78 | 75 76 77 | mp2an |  |-  ( w e. ( 0 [,) +oo ) <-> ( w e. RR /\ 0 <_ w /\ w < +oo ) ) | 
						
							| 79 | 74 78 | sylib |  |-  ( ( ph /\ w e. A ) -> ( w e. RR /\ 0 <_ w /\ w < +oo ) ) | 
						
							| 80 | 79 | simp1d |  |-  ( ( ph /\ w e. A ) -> w e. RR ) | 
						
							| 81 | 80 | adantr |  |-  ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> w e. RR ) | 
						
							| 82 | 79 | simp2d |  |-  ( ( ph /\ w e. A ) -> 0 <_ w ) | 
						
							| 83 |  | leloe |  |-  ( ( 0 e. RR /\ w e. RR ) -> ( 0 <_ w <-> ( 0 < w \/ 0 = w ) ) ) | 
						
							| 84 | 75 80 83 | sylancr |  |-  ( ( ph /\ w e. A ) -> ( 0 <_ w <-> ( 0 < w \/ 0 = w ) ) ) | 
						
							| 85 | 82 84 | mpbid |  |-  ( ( ph /\ w e. A ) -> ( 0 < w \/ 0 = w ) ) | 
						
							| 86 | 85 | ord |  |-  ( ( ph /\ w e. A ) -> ( -. 0 < w -> 0 = w ) ) | 
						
							| 87 |  | eqcom |  |-  ( 0 = w <-> w = 0 ) | 
						
							| 88 | 86 87 | imbitrdi |  |-  ( ( ph /\ w e. A ) -> ( -. 0 < w -> w = 0 ) ) | 
						
							| 89 | 88 | con1d |  |-  ( ( ph /\ w e. A ) -> ( -. w = 0 -> 0 < w ) ) | 
						
							| 90 | 89 | imp |  |-  ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> 0 < w ) | 
						
							| 91 | 81 90 | elrpd |  |-  ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> w e. RR+ ) | 
						
							| 92 |  | rpcnne0 |  |-  ( w e. RR+ -> ( w e. CC /\ w =/= 0 ) ) | 
						
							| 93 |  | recrec |  |-  ( ( w e. CC /\ w =/= 0 ) -> ( 1 / ( 1 / w ) ) = w ) | 
						
							| 94 | 92 93 | syl |  |-  ( w e. RR+ -> ( 1 / ( 1 / w ) ) = w ) | 
						
							| 95 | 91 94 | syl |  |-  ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> ( 1 / ( 1 / w ) ) = w ) | 
						
							| 96 | 95 | csbeq1d |  |-  ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> [_ ( 1 / ( 1 / w ) ) / x ]_ R = [_ w / x ]_ R ) | 
						
							| 97 |  | oveq2 |  |-  ( y = ( 1 / w ) -> ( 1 / y ) = ( 1 / ( 1 / w ) ) ) | 
						
							| 98 | 97 | csbeq1d |  |-  ( y = ( 1 / w ) -> [_ ( 1 / y ) / x ]_ R = [_ ( 1 / ( 1 / w ) ) / x ]_ R ) | 
						
							| 99 | 98 | eleq1d |  |-  ( y = ( 1 / w ) -> ( [_ ( 1 / y ) / x ]_ R e. CC <-> [_ ( 1 / ( 1 / w ) ) / x ]_ R e. CC ) ) | 
						
							| 100 | 69 36 | eqeltrd |  |-  ( ( ph /\ y e. ( B i^i RR+ ) ) -> [_ ( 1 / y ) / x ]_ R e. CC ) | 
						
							| 101 | 100 | ralrimiva |  |-  ( ph -> A. y e. ( B i^i RR+ ) [_ ( 1 / y ) / x ]_ R e. CC ) | 
						
							| 102 | 101 | ad2antrr |  |-  ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> A. y e. ( B i^i RR+ ) [_ ( 1 / y ) / x ]_ R e. CC ) | 
						
							| 103 |  | simplr |  |-  ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> w e. A ) | 
						
							| 104 |  | simpll |  |-  ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> ph ) | 
						
							| 105 |  | eleq1 |  |-  ( y = ( 1 / w ) -> ( y e. B <-> ( 1 / w ) e. B ) ) | 
						
							| 106 | 97 | eleq1d |  |-  ( y = ( 1 / w ) -> ( ( 1 / y ) e. A <-> ( 1 / ( 1 / w ) ) e. A ) ) | 
						
							| 107 | 105 106 | bibi12d |  |-  ( y = ( 1 / w ) -> ( ( y e. B <-> ( 1 / y ) e. A ) <-> ( ( 1 / w ) e. B <-> ( 1 / ( 1 / w ) ) e. A ) ) ) | 
						
							| 108 | 6 | ralrimiva |  |-  ( ph -> A. y e. RR+ ( y e. B <-> ( 1 / y ) e. A ) ) | 
						
							| 109 | 108 | adantr |  |-  ( ( ph /\ w e. RR+ ) -> A. y e. RR+ ( y e. B <-> ( 1 / y ) e. A ) ) | 
						
							| 110 |  | rpreccl |  |-  ( w e. RR+ -> ( 1 / w ) e. RR+ ) | 
						
							| 111 | 110 | adantl |  |-  ( ( ph /\ w e. RR+ ) -> ( 1 / w ) e. RR+ ) | 
						
							| 112 | 107 109 111 | rspcdva |  |-  ( ( ph /\ w e. RR+ ) -> ( ( 1 / w ) e. B <-> ( 1 / ( 1 / w ) ) e. A ) ) | 
						
							| 113 | 94 | adantl |  |-  ( ( ph /\ w e. RR+ ) -> ( 1 / ( 1 / w ) ) = w ) | 
						
							| 114 | 113 | eleq1d |  |-  ( ( ph /\ w e. RR+ ) -> ( ( 1 / ( 1 / w ) ) e. A <-> w e. A ) ) | 
						
							| 115 | 112 114 | bitr2d |  |-  ( ( ph /\ w e. RR+ ) -> ( w e. A <-> ( 1 / w ) e. B ) ) | 
						
							| 116 | 104 91 115 | syl2anc |  |-  ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> ( w e. A <-> ( 1 / w ) e. B ) ) | 
						
							| 117 | 103 116 | mpbid |  |-  ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> ( 1 / w ) e. B ) | 
						
							| 118 | 91 | rpreccld |  |-  ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> ( 1 / w ) e. RR+ ) | 
						
							| 119 | 117 118 | elind |  |-  ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> ( 1 / w ) e. ( B i^i RR+ ) ) | 
						
							| 120 | 99 102 119 | rspcdva |  |-  ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> [_ ( 1 / ( 1 / w ) ) / x ]_ R e. CC ) | 
						
							| 121 | 96 120 | eqeltrrd |  |-  ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> [_ w / x ]_ R e. CC ) | 
						
							| 122 | 73 121 | ifclda |  |-  ( ( ph /\ w e. A ) -> if ( w = 0 , C , [_ w / x ]_ R ) e. CC ) | 
						
							| 123 | 111 | biantrud |  |-  ( ( ph /\ w e. RR+ ) -> ( ( 1 / w ) e. B <-> ( ( 1 / w ) e. B /\ ( 1 / w ) e. RR+ ) ) ) | 
						
							| 124 | 115 123 | bitrd |  |-  ( ( ph /\ w e. RR+ ) -> ( w e. A <-> ( ( 1 / w ) e. B /\ ( 1 / w ) e. RR+ ) ) ) | 
						
							| 125 |  | elin |  |-  ( ( 1 / w ) e. ( B i^i RR+ ) <-> ( ( 1 / w ) e. B /\ ( 1 / w ) e. RR+ ) ) | 
						
							| 126 | 124 125 | bitr4di |  |-  ( ( ph /\ w e. RR+ ) -> ( w e. A <-> ( 1 / w ) e. ( B i^i RR+ ) ) ) | 
						
							| 127 |  | iftrue |  |-  ( w = 0 -> if ( w = 0 , C , [_ w / x ]_ R ) = C ) | 
						
							| 128 |  | eqeq1 |  |-  ( w = ( 1 / y ) -> ( w = 0 <-> ( 1 / y ) = 0 ) ) | 
						
							| 129 |  | csbeq1 |  |-  ( w = ( 1 / y ) -> [_ w / x ]_ R = [_ ( 1 / y ) / x ]_ R ) | 
						
							| 130 | 128 129 | ifbieq2d |  |-  ( w = ( 1 / y ) -> if ( w = 0 , C , [_ w / x ]_ R ) = if ( ( 1 / y ) = 0 , C , [_ ( 1 / y ) / x ]_ R ) ) | 
						
							| 131 | 1 2 55 122 126 127 130 8 9 | rlimcnp |  |-  ( ph -> ( ( y e. ( B i^i RR+ ) |-> if ( ( 1 / y ) = 0 , C , [_ ( 1 / y ) / x ]_ R ) ) ~~>r C <-> ( w e. A |-> if ( w = 0 , C , [_ w / x ]_ R ) ) e. ( ( K CnP J ) ` 0 ) ) ) | 
						
							| 132 |  | nfcv |  |-  F/_ w if ( x = 0 , C , R ) | 
						
							| 133 |  | nfv |  |-  F/ x w = 0 | 
						
							| 134 |  | nfcv |  |-  F/_ x C | 
						
							| 135 |  | nfcsb1v |  |-  F/_ x [_ w / x ]_ R | 
						
							| 136 | 133 134 135 | nfif |  |-  F/_ x if ( w = 0 , C , [_ w / x ]_ R ) | 
						
							| 137 |  | eqeq1 |  |-  ( x = w -> ( x = 0 <-> w = 0 ) ) | 
						
							| 138 |  | csbeq1a |  |-  ( x = w -> R = [_ w / x ]_ R ) | 
						
							| 139 | 137 138 | ifbieq2d |  |-  ( x = w -> if ( x = 0 , C , R ) = if ( w = 0 , C , [_ w / x ]_ R ) ) | 
						
							| 140 | 132 136 139 | cbvmpt |  |-  ( x e. A |-> if ( x = 0 , C , R ) ) = ( w e. A |-> if ( w = 0 , C , [_ w / x ]_ R ) ) | 
						
							| 141 | 140 | eleq1i |  |-  ( ( x e. A |-> if ( x = 0 , C , R ) ) e. ( ( K CnP J ) ` 0 ) <-> ( w e. A |-> if ( w = 0 , C , [_ w / x ]_ R ) ) e. ( ( K CnP J ) ` 0 ) ) | 
						
							| 142 | 131 141 | bitr4di |  |-  ( ph -> ( ( y e. ( B i^i RR+ ) |-> if ( ( 1 / y ) = 0 , C , [_ ( 1 / y ) / x ]_ R ) ) ~~>r C <-> ( x e. A |-> if ( x = 0 , C , R ) ) e. ( ( K CnP J ) ` 0 ) ) ) | 
						
							| 143 | 53 72 142 | 3bitr2d |  |-  ( ph -> ( ( y e. B |-> S ) ~~>r C <-> ( x e. A |-> if ( x = 0 , C , R ) ) e. ( ( K CnP J ) ` 0 ) ) ) |