Step |
Hyp |
Ref |
Expression |
1 |
|
rlimcnp2.a |
|- ( ph -> A C_ ( 0 [,) +oo ) ) |
2 |
|
rlimcnp2.0 |
|- ( ph -> 0 e. A ) |
3 |
|
rlimcnp2.b |
|- ( ph -> B C_ RR ) |
4 |
|
rlimcnp2.c |
|- ( ph -> C e. CC ) |
5 |
|
rlimcnp2.r |
|- ( ( ph /\ y e. B ) -> S e. CC ) |
6 |
|
rlimcnp2.d |
|- ( ( ph /\ y e. RR+ ) -> ( y e. B <-> ( 1 / y ) e. A ) ) |
7 |
|
rlimcnp2.s |
|- ( y = ( 1 / x ) -> S = R ) |
8 |
|
rlimcnp2.j |
|- J = ( TopOpen ` CCfld ) |
9 |
|
rlimcnp2.k |
|- K = ( J |`t A ) |
10 |
|
inss1 |
|- ( B i^i ( 1 [,) +oo ) ) C_ B |
11 |
|
resmpt |
|- ( ( B i^i ( 1 [,) +oo ) ) C_ B -> ( ( y e. B |-> S ) |` ( B i^i ( 1 [,) +oo ) ) ) = ( y e. ( B i^i ( 1 [,) +oo ) ) |-> S ) ) |
12 |
10 11
|
mp1i |
|- ( ph -> ( ( y e. B |-> S ) |` ( B i^i ( 1 [,) +oo ) ) ) = ( y e. ( B i^i ( 1 [,) +oo ) ) |-> S ) ) |
13 |
|
0xr |
|- 0 e. RR* |
14 |
|
0lt1 |
|- 0 < 1 |
15 |
|
df-ioo |
|- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
16 |
|
df-ico |
|- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
17 |
|
xrltletr |
|- ( ( 0 e. RR* /\ 1 e. RR* /\ w e. RR* ) -> ( ( 0 < 1 /\ 1 <_ w ) -> 0 < w ) ) |
18 |
15 16 17
|
ixxss1 |
|- ( ( 0 e. RR* /\ 0 < 1 ) -> ( 1 [,) +oo ) C_ ( 0 (,) +oo ) ) |
19 |
13 14 18
|
mp2an |
|- ( 1 [,) +oo ) C_ ( 0 (,) +oo ) |
20 |
|
ioorp |
|- ( 0 (,) +oo ) = RR+ |
21 |
19 20
|
sseqtri |
|- ( 1 [,) +oo ) C_ RR+ |
22 |
|
sslin |
|- ( ( 1 [,) +oo ) C_ RR+ -> ( B i^i ( 1 [,) +oo ) ) C_ ( B i^i RR+ ) ) |
23 |
21 22
|
ax-mp |
|- ( B i^i ( 1 [,) +oo ) ) C_ ( B i^i RR+ ) |
24 |
|
resmpt |
|- ( ( B i^i ( 1 [,) +oo ) ) C_ ( B i^i RR+ ) -> ( ( y e. ( B i^i RR+ ) |-> S ) |` ( B i^i ( 1 [,) +oo ) ) ) = ( y e. ( B i^i ( 1 [,) +oo ) ) |-> S ) ) |
25 |
23 24
|
mp1i |
|- ( ph -> ( ( y e. ( B i^i RR+ ) |-> S ) |` ( B i^i ( 1 [,) +oo ) ) ) = ( y e. ( B i^i ( 1 [,) +oo ) ) |-> S ) ) |
26 |
12 25
|
eqtr4d |
|- ( ph -> ( ( y e. B |-> S ) |` ( B i^i ( 1 [,) +oo ) ) ) = ( ( y e. ( B i^i RR+ ) |-> S ) |` ( B i^i ( 1 [,) +oo ) ) ) ) |
27 |
|
resres |
|- ( ( ( y e. B |-> S ) |` B ) |` ( 1 [,) +oo ) ) = ( ( y e. B |-> S ) |` ( B i^i ( 1 [,) +oo ) ) ) |
28 |
|
resres |
|- ( ( ( y e. ( B i^i RR+ ) |-> S ) |` B ) |` ( 1 [,) +oo ) ) = ( ( y e. ( B i^i RR+ ) |-> S ) |` ( B i^i ( 1 [,) +oo ) ) ) |
29 |
26 27 28
|
3eqtr4g |
|- ( ph -> ( ( ( y e. B |-> S ) |` B ) |` ( 1 [,) +oo ) ) = ( ( ( y e. ( B i^i RR+ ) |-> S ) |` B ) |` ( 1 [,) +oo ) ) ) |
30 |
5
|
fmpttd |
|- ( ph -> ( y e. B |-> S ) : B --> CC ) |
31 |
30
|
ffnd |
|- ( ph -> ( y e. B |-> S ) Fn B ) |
32 |
|
fnresdm |
|- ( ( y e. B |-> S ) Fn B -> ( ( y e. B |-> S ) |` B ) = ( y e. B |-> S ) ) |
33 |
31 32
|
syl |
|- ( ph -> ( ( y e. B |-> S ) |` B ) = ( y e. B |-> S ) ) |
34 |
33
|
reseq1d |
|- ( ph -> ( ( ( y e. B |-> S ) |` B ) |` ( 1 [,) +oo ) ) = ( ( y e. B |-> S ) |` ( 1 [,) +oo ) ) ) |
35 |
|
elinel1 |
|- ( y e. ( B i^i RR+ ) -> y e. B ) |
36 |
35 5
|
sylan2 |
|- ( ( ph /\ y e. ( B i^i RR+ ) ) -> S e. CC ) |
37 |
36
|
fmpttd |
|- ( ph -> ( y e. ( B i^i RR+ ) |-> S ) : ( B i^i RR+ ) --> CC ) |
38 |
|
frel |
|- ( ( y e. ( B i^i RR+ ) |-> S ) : ( B i^i RR+ ) --> CC -> Rel ( y e. ( B i^i RR+ ) |-> S ) ) |
39 |
37 38
|
syl |
|- ( ph -> Rel ( y e. ( B i^i RR+ ) |-> S ) ) |
40 |
|
eqid |
|- ( y e. ( B i^i RR+ ) |-> S ) = ( y e. ( B i^i RR+ ) |-> S ) |
41 |
40 36
|
dmmptd |
|- ( ph -> dom ( y e. ( B i^i RR+ ) |-> S ) = ( B i^i RR+ ) ) |
42 |
|
inss1 |
|- ( B i^i RR+ ) C_ B |
43 |
41 42
|
eqsstrdi |
|- ( ph -> dom ( y e. ( B i^i RR+ ) |-> S ) C_ B ) |
44 |
|
relssres |
|- ( ( Rel ( y e. ( B i^i RR+ ) |-> S ) /\ dom ( y e. ( B i^i RR+ ) |-> S ) C_ B ) -> ( ( y e. ( B i^i RR+ ) |-> S ) |` B ) = ( y e. ( B i^i RR+ ) |-> S ) ) |
45 |
39 43 44
|
syl2anc |
|- ( ph -> ( ( y e. ( B i^i RR+ ) |-> S ) |` B ) = ( y e. ( B i^i RR+ ) |-> S ) ) |
46 |
45
|
reseq1d |
|- ( ph -> ( ( ( y e. ( B i^i RR+ ) |-> S ) |` B ) |` ( 1 [,) +oo ) ) = ( ( y e. ( B i^i RR+ ) |-> S ) |` ( 1 [,) +oo ) ) ) |
47 |
29 34 46
|
3eqtr3d |
|- ( ph -> ( ( y e. B |-> S ) |` ( 1 [,) +oo ) ) = ( ( y e. ( B i^i RR+ ) |-> S ) |` ( 1 [,) +oo ) ) ) |
48 |
47
|
breq1d |
|- ( ph -> ( ( ( y e. B |-> S ) |` ( 1 [,) +oo ) ) ~~>r C <-> ( ( y e. ( B i^i RR+ ) |-> S ) |` ( 1 [,) +oo ) ) ~~>r C ) ) |
49 |
|
1red |
|- ( ph -> 1 e. RR ) |
50 |
30 3 49
|
rlimresb |
|- ( ph -> ( ( y e. B |-> S ) ~~>r C <-> ( ( y e. B |-> S ) |` ( 1 [,) +oo ) ) ~~>r C ) ) |
51 |
42 3
|
sstrid |
|- ( ph -> ( B i^i RR+ ) C_ RR ) |
52 |
37 51 49
|
rlimresb |
|- ( ph -> ( ( y e. ( B i^i RR+ ) |-> S ) ~~>r C <-> ( ( y e. ( B i^i RR+ ) |-> S ) |` ( 1 [,) +oo ) ) ~~>r C ) ) |
53 |
48 50 52
|
3bitr4d |
|- ( ph -> ( ( y e. B |-> S ) ~~>r C <-> ( y e. ( B i^i RR+ ) |-> S ) ~~>r C ) ) |
54 |
|
inss2 |
|- ( B i^i RR+ ) C_ RR+ |
55 |
54
|
a1i |
|- ( ph -> ( B i^i RR+ ) C_ RR+ ) |
56 |
55
|
sselda |
|- ( ( ph /\ y e. ( B i^i RR+ ) ) -> y e. RR+ ) |
57 |
56
|
rpreccld |
|- ( ( ph /\ y e. ( B i^i RR+ ) ) -> ( 1 / y ) e. RR+ ) |
58 |
57
|
rpne0d |
|- ( ( ph /\ y e. ( B i^i RR+ ) ) -> ( 1 / y ) =/= 0 ) |
59 |
58
|
neneqd |
|- ( ( ph /\ y e. ( B i^i RR+ ) ) -> -. ( 1 / y ) = 0 ) |
60 |
59
|
iffalsed |
|- ( ( ph /\ y e. ( B i^i RR+ ) ) -> if ( ( 1 / y ) = 0 , C , [_ ( 1 / y ) / x ]_ R ) = [_ ( 1 / y ) / x ]_ R ) |
61 |
|
oveq2 |
|- ( x = ( 1 / y ) -> ( 1 / x ) = ( 1 / ( 1 / y ) ) ) |
62 |
|
rpcnne0 |
|- ( y e. RR+ -> ( y e. CC /\ y =/= 0 ) ) |
63 |
|
recrec |
|- ( ( y e. CC /\ y =/= 0 ) -> ( 1 / ( 1 / y ) ) = y ) |
64 |
56 62 63
|
3syl |
|- ( ( ph /\ y e. ( B i^i RR+ ) ) -> ( 1 / ( 1 / y ) ) = y ) |
65 |
61 64
|
sylan9eqr |
|- ( ( ( ph /\ y e. ( B i^i RR+ ) ) /\ x = ( 1 / y ) ) -> ( 1 / x ) = y ) |
66 |
65
|
eqcomd |
|- ( ( ( ph /\ y e. ( B i^i RR+ ) ) /\ x = ( 1 / y ) ) -> y = ( 1 / x ) ) |
67 |
66 7
|
syl |
|- ( ( ( ph /\ y e. ( B i^i RR+ ) ) /\ x = ( 1 / y ) ) -> S = R ) |
68 |
67
|
eqcomd |
|- ( ( ( ph /\ y e. ( B i^i RR+ ) ) /\ x = ( 1 / y ) ) -> R = S ) |
69 |
57 68
|
csbied |
|- ( ( ph /\ y e. ( B i^i RR+ ) ) -> [_ ( 1 / y ) / x ]_ R = S ) |
70 |
60 69
|
eqtrd |
|- ( ( ph /\ y e. ( B i^i RR+ ) ) -> if ( ( 1 / y ) = 0 , C , [_ ( 1 / y ) / x ]_ R ) = S ) |
71 |
70
|
mpteq2dva |
|- ( ph -> ( y e. ( B i^i RR+ ) |-> if ( ( 1 / y ) = 0 , C , [_ ( 1 / y ) / x ]_ R ) ) = ( y e. ( B i^i RR+ ) |-> S ) ) |
72 |
71
|
breq1d |
|- ( ph -> ( ( y e. ( B i^i RR+ ) |-> if ( ( 1 / y ) = 0 , C , [_ ( 1 / y ) / x ]_ R ) ) ~~>r C <-> ( y e. ( B i^i RR+ ) |-> S ) ~~>r C ) ) |
73 |
4
|
ad2antrr |
|- ( ( ( ph /\ w e. A ) /\ w = 0 ) -> C e. CC ) |
74 |
1
|
sselda |
|- ( ( ph /\ w e. A ) -> w e. ( 0 [,) +oo ) ) |
75 |
|
0re |
|- 0 e. RR |
76 |
|
pnfxr |
|- +oo e. RR* |
77 |
|
elico2 |
|- ( ( 0 e. RR /\ +oo e. RR* ) -> ( w e. ( 0 [,) +oo ) <-> ( w e. RR /\ 0 <_ w /\ w < +oo ) ) ) |
78 |
75 76 77
|
mp2an |
|- ( w e. ( 0 [,) +oo ) <-> ( w e. RR /\ 0 <_ w /\ w < +oo ) ) |
79 |
74 78
|
sylib |
|- ( ( ph /\ w e. A ) -> ( w e. RR /\ 0 <_ w /\ w < +oo ) ) |
80 |
79
|
simp1d |
|- ( ( ph /\ w e. A ) -> w e. RR ) |
81 |
80
|
adantr |
|- ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> w e. RR ) |
82 |
79
|
simp2d |
|- ( ( ph /\ w e. A ) -> 0 <_ w ) |
83 |
|
leloe |
|- ( ( 0 e. RR /\ w e. RR ) -> ( 0 <_ w <-> ( 0 < w \/ 0 = w ) ) ) |
84 |
75 80 83
|
sylancr |
|- ( ( ph /\ w e. A ) -> ( 0 <_ w <-> ( 0 < w \/ 0 = w ) ) ) |
85 |
82 84
|
mpbid |
|- ( ( ph /\ w e. A ) -> ( 0 < w \/ 0 = w ) ) |
86 |
85
|
ord |
|- ( ( ph /\ w e. A ) -> ( -. 0 < w -> 0 = w ) ) |
87 |
|
eqcom |
|- ( 0 = w <-> w = 0 ) |
88 |
86 87
|
syl6ib |
|- ( ( ph /\ w e. A ) -> ( -. 0 < w -> w = 0 ) ) |
89 |
88
|
con1d |
|- ( ( ph /\ w e. A ) -> ( -. w = 0 -> 0 < w ) ) |
90 |
89
|
imp |
|- ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> 0 < w ) |
91 |
81 90
|
elrpd |
|- ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> w e. RR+ ) |
92 |
|
rpcnne0 |
|- ( w e. RR+ -> ( w e. CC /\ w =/= 0 ) ) |
93 |
|
recrec |
|- ( ( w e. CC /\ w =/= 0 ) -> ( 1 / ( 1 / w ) ) = w ) |
94 |
92 93
|
syl |
|- ( w e. RR+ -> ( 1 / ( 1 / w ) ) = w ) |
95 |
91 94
|
syl |
|- ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> ( 1 / ( 1 / w ) ) = w ) |
96 |
95
|
csbeq1d |
|- ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> [_ ( 1 / ( 1 / w ) ) / x ]_ R = [_ w / x ]_ R ) |
97 |
|
oveq2 |
|- ( y = ( 1 / w ) -> ( 1 / y ) = ( 1 / ( 1 / w ) ) ) |
98 |
97
|
csbeq1d |
|- ( y = ( 1 / w ) -> [_ ( 1 / y ) / x ]_ R = [_ ( 1 / ( 1 / w ) ) / x ]_ R ) |
99 |
98
|
eleq1d |
|- ( y = ( 1 / w ) -> ( [_ ( 1 / y ) / x ]_ R e. CC <-> [_ ( 1 / ( 1 / w ) ) / x ]_ R e. CC ) ) |
100 |
69 36
|
eqeltrd |
|- ( ( ph /\ y e. ( B i^i RR+ ) ) -> [_ ( 1 / y ) / x ]_ R e. CC ) |
101 |
100
|
ralrimiva |
|- ( ph -> A. y e. ( B i^i RR+ ) [_ ( 1 / y ) / x ]_ R e. CC ) |
102 |
101
|
ad2antrr |
|- ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> A. y e. ( B i^i RR+ ) [_ ( 1 / y ) / x ]_ R e. CC ) |
103 |
|
simplr |
|- ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> w e. A ) |
104 |
|
simpll |
|- ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> ph ) |
105 |
|
eleq1 |
|- ( y = ( 1 / w ) -> ( y e. B <-> ( 1 / w ) e. B ) ) |
106 |
97
|
eleq1d |
|- ( y = ( 1 / w ) -> ( ( 1 / y ) e. A <-> ( 1 / ( 1 / w ) ) e. A ) ) |
107 |
105 106
|
bibi12d |
|- ( y = ( 1 / w ) -> ( ( y e. B <-> ( 1 / y ) e. A ) <-> ( ( 1 / w ) e. B <-> ( 1 / ( 1 / w ) ) e. A ) ) ) |
108 |
6
|
ralrimiva |
|- ( ph -> A. y e. RR+ ( y e. B <-> ( 1 / y ) e. A ) ) |
109 |
108
|
adantr |
|- ( ( ph /\ w e. RR+ ) -> A. y e. RR+ ( y e. B <-> ( 1 / y ) e. A ) ) |
110 |
|
rpreccl |
|- ( w e. RR+ -> ( 1 / w ) e. RR+ ) |
111 |
110
|
adantl |
|- ( ( ph /\ w e. RR+ ) -> ( 1 / w ) e. RR+ ) |
112 |
107 109 111
|
rspcdva |
|- ( ( ph /\ w e. RR+ ) -> ( ( 1 / w ) e. B <-> ( 1 / ( 1 / w ) ) e. A ) ) |
113 |
94
|
adantl |
|- ( ( ph /\ w e. RR+ ) -> ( 1 / ( 1 / w ) ) = w ) |
114 |
113
|
eleq1d |
|- ( ( ph /\ w e. RR+ ) -> ( ( 1 / ( 1 / w ) ) e. A <-> w e. A ) ) |
115 |
112 114
|
bitr2d |
|- ( ( ph /\ w e. RR+ ) -> ( w e. A <-> ( 1 / w ) e. B ) ) |
116 |
104 91 115
|
syl2anc |
|- ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> ( w e. A <-> ( 1 / w ) e. B ) ) |
117 |
103 116
|
mpbid |
|- ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> ( 1 / w ) e. B ) |
118 |
91
|
rpreccld |
|- ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> ( 1 / w ) e. RR+ ) |
119 |
117 118
|
elind |
|- ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> ( 1 / w ) e. ( B i^i RR+ ) ) |
120 |
99 102 119
|
rspcdva |
|- ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> [_ ( 1 / ( 1 / w ) ) / x ]_ R e. CC ) |
121 |
96 120
|
eqeltrrd |
|- ( ( ( ph /\ w e. A ) /\ -. w = 0 ) -> [_ w / x ]_ R e. CC ) |
122 |
73 121
|
ifclda |
|- ( ( ph /\ w e. A ) -> if ( w = 0 , C , [_ w / x ]_ R ) e. CC ) |
123 |
111
|
biantrud |
|- ( ( ph /\ w e. RR+ ) -> ( ( 1 / w ) e. B <-> ( ( 1 / w ) e. B /\ ( 1 / w ) e. RR+ ) ) ) |
124 |
115 123
|
bitrd |
|- ( ( ph /\ w e. RR+ ) -> ( w e. A <-> ( ( 1 / w ) e. B /\ ( 1 / w ) e. RR+ ) ) ) |
125 |
|
elin |
|- ( ( 1 / w ) e. ( B i^i RR+ ) <-> ( ( 1 / w ) e. B /\ ( 1 / w ) e. RR+ ) ) |
126 |
124 125
|
bitr4di |
|- ( ( ph /\ w e. RR+ ) -> ( w e. A <-> ( 1 / w ) e. ( B i^i RR+ ) ) ) |
127 |
|
iftrue |
|- ( w = 0 -> if ( w = 0 , C , [_ w / x ]_ R ) = C ) |
128 |
|
eqeq1 |
|- ( w = ( 1 / y ) -> ( w = 0 <-> ( 1 / y ) = 0 ) ) |
129 |
|
csbeq1 |
|- ( w = ( 1 / y ) -> [_ w / x ]_ R = [_ ( 1 / y ) / x ]_ R ) |
130 |
128 129
|
ifbieq2d |
|- ( w = ( 1 / y ) -> if ( w = 0 , C , [_ w / x ]_ R ) = if ( ( 1 / y ) = 0 , C , [_ ( 1 / y ) / x ]_ R ) ) |
131 |
1 2 55 122 126 127 130 8 9
|
rlimcnp |
|- ( ph -> ( ( y e. ( B i^i RR+ ) |-> if ( ( 1 / y ) = 0 , C , [_ ( 1 / y ) / x ]_ R ) ) ~~>r C <-> ( w e. A |-> if ( w = 0 , C , [_ w / x ]_ R ) ) e. ( ( K CnP J ) ` 0 ) ) ) |
132 |
|
nfcv |
|- F/_ w if ( x = 0 , C , R ) |
133 |
|
nfv |
|- F/ x w = 0 |
134 |
|
nfcv |
|- F/_ x C |
135 |
|
nfcsb1v |
|- F/_ x [_ w / x ]_ R |
136 |
133 134 135
|
nfif |
|- F/_ x if ( w = 0 , C , [_ w / x ]_ R ) |
137 |
|
eqeq1 |
|- ( x = w -> ( x = 0 <-> w = 0 ) ) |
138 |
|
csbeq1a |
|- ( x = w -> R = [_ w / x ]_ R ) |
139 |
137 138
|
ifbieq2d |
|- ( x = w -> if ( x = 0 , C , R ) = if ( w = 0 , C , [_ w / x ]_ R ) ) |
140 |
132 136 139
|
cbvmpt |
|- ( x e. A |-> if ( x = 0 , C , R ) ) = ( w e. A |-> if ( w = 0 , C , [_ w / x ]_ R ) ) |
141 |
140
|
eleq1i |
|- ( ( x e. A |-> if ( x = 0 , C , R ) ) e. ( ( K CnP J ) ` 0 ) <-> ( w e. A |-> if ( w = 0 , C , [_ w / x ]_ R ) ) e. ( ( K CnP J ) ` 0 ) ) |
142 |
131 141
|
bitr4di |
|- ( ph -> ( ( y e. ( B i^i RR+ ) |-> if ( ( 1 / y ) = 0 , C , [_ ( 1 / y ) / x ]_ R ) ) ~~>r C <-> ( x e. A |-> if ( x = 0 , C , R ) ) e. ( ( K CnP J ) ` 0 ) ) ) |
143 |
53 72 142
|
3bitr2d |
|- ( ph -> ( ( y e. B |-> S ) ~~>r C <-> ( x e. A |-> if ( x = 0 , C , R ) ) e. ( ( K CnP J ) ` 0 ) ) ) |