Metamath Proof Explorer


Theorem rlimcnp2

Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function S ( y ) = R ( 1 / y ) at zero. (Contributed by Mario Carneiro, 1-Mar-2015)

Ref Expression
Hypotheses rlimcnp2.a φA0+∞
rlimcnp2.0 φ0A
rlimcnp2.b φB
rlimcnp2.c φC
rlimcnp2.r φyBS
rlimcnp2.d φy+yB1yA
rlimcnp2.s y=1xS=R
rlimcnp2.j J=TopOpenfld
rlimcnp2.k K=J𝑡A
Assertion rlimcnp2 φyBSCxAifx=0CRKCnPJ0

Proof

Step Hyp Ref Expression
1 rlimcnp2.a φA0+∞
2 rlimcnp2.0 φ0A
3 rlimcnp2.b φB
4 rlimcnp2.c φC
5 rlimcnp2.r φyBS
6 rlimcnp2.d φy+yB1yA
7 rlimcnp2.s y=1xS=R
8 rlimcnp2.j J=TopOpenfld
9 rlimcnp2.k K=J𝑡A
10 inss1 B1+∞B
11 resmpt B1+∞ByBSB1+∞=yB1+∞S
12 10 11 mp1i φyBSB1+∞=yB1+∞S
13 0xr 0*
14 0lt1 0<1
15 df-ioo .=x*,y*z*|x<zz<y
16 df-ico .=x*,y*z*|xzz<y
17 xrltletr 0*1*w*0<11w0<w
18 15 16 17 ixxss1 0*0<11+∞0+∞
19 13 14 18 mp2an 1+∞0+∞
20 ioorp 0+∞=+
21 19 20 sseqtri 1+∞+
22 sslin 1+∞+B1+∞B+
23 21 22 ax-mp B1+∞B+
24 resmpt B1+∞B+yB+SB1+∞=yB1+∞S
25 23 24 mp1i φyB+SB1+∞=yB1+∞S
26 12 25 eqtr4d φyBSB1+∞=yB+SB1+∞
27 resres yBSB1+∞=yBSB1+∞
28 resres yB+SB1+∞=yB+SB1+∞
29 26 27 28 3eqtr4g φyBSB1+∞=yB+SB1+∞
30 5 fmpttd φyBS:B
31 30 ffnd φyBSFnB
32 fnresdm yBSFnByBSB=yBS
33 31 32 syl φyBSB=yBS
34 33 reseq1d φyBSB1+∞=yBS1+∞
35 elinel1 yB+yB
36 35 5 sylan2 φyB+S
37 36 fmpttd φyB+S:B+
38 frel yB+S:B+RelyB+S
39 37 38 syl φRelyB+S
40 eqid yB+S=yB+S
41 40 36 dmmptd φdomyB+S=B+
42 inss1 B+B
43 41 42 eqsstrdi φdomyB+SB
44 relssres RelyB+SdomyB+SByB+SB=yB+S
45 39 43 44 syl2anc φyB+SB=yB+S
46 45 reseq1d φyB+SB1+∞=yB+S1+∞
47 29 34 46 3eqtr3d φyBS1+∞=yB+S1+∞
48 47 breq1d φyBS1+∞CyB+S1+∞C
49 1red φ1
50 30 3 49 rlimresb φyBSCyBS1+∞C
51 42 3 sstrid φB+
52 37 51 49 rlimresb φyB+SCyB+S1+∞C
53 48 50 52 3bitr4d φyBSCyB+SC
54 inss2 B++
55 54 a1i φB++
56 55 sselda φyB+y+
57 56 rpreccld φyB+1y+
58 57 rpne0d φyB+1y0
59 58 neneqd φyB+¬1y=0
60 59 iffalsed φyB+if1y=0C1y/xR=1y/xR
61 oveq2 x=1y1x=11y
62 rpcnne0 y+yy0
63 recrec yy011y=y
64 56 62 63 3syl φyB+11y=y
65 61 64 sylan9eqr φyB+x=1y1x=y
66 65 eqcomd φyB+x=1yy=1x
67 66 7 syl φyB+x=1yS=R
68 67 eqcomd φyB+x=1yR=S
69 57 68 csbied φyB+1y/xR=S
70 60 69 eqtrd φyB+if1y=0C1y/xR=S
71 70 mpteq2dva φyB+if1y=0C1y/xR=yB+S
72 71 breq1d φyB+if1y=0C1y/xRCyB+SC
73 4 ad2antrr φwAw=0C
74 1 sselda φwAw0+∞
75 0re 0
76 pnfxr +∞*
77 elico2 0+∞*w0+∞w0ww<+∞
78 75 76 77 mp2an w0+∞w0ww<+∞
79 74 78 sylib φwAw0ww<+∞
80 79 simp1d φwAw
81 80 adantr φwA¬w=0w
82 79 simp2d φwA0w
83 leloe 0w0w0<w0=w
84 75 80 83 sylancr φwA0w0<w0=w
85 82 84 mpbid φwA0<w0=w
86 85 ord φwA¬0<w0=w
87 eqcom 0=ww=0
88 86 87 imbitrdi φwA¬0<ww=0
89 88 con1d φwA¬w=00<w
90 89 imp φwA¬w=00<w
91 81 90 elrpd φwA¬w=0w+
92 rpcnne0 w+ww0
93 recrec ww011w=w
94 92 93 syl w+11w=w
95 91 94 syl φwA¬w=011w=w
96 95 csbeq1d φwA¬w=011w/xR=w/xR
97 oveq2 y=1w1y=11w
98 97 csbeq1d y=1w1y/xR=11w/xR
99 98 eleq1d y=1w1y/xR11w/xR
100 69 36 eqeltrd φyB+1y/xR
101 100 ralrimiva φyB+1y/xR
102 101 ad2antrr φwA¬w=0yB+1y/xR
103 simplr φwA¬w=0wA
104 simpll φwA¬w=0φ
105 eleq1 y=1wyB1wB
106 97 eleq1d y=1w1yA11wA
107 105 106 bibi12d y=1wyB1yA1wB11wA
108 6 ralrimiva φy+yB1yA
109 108 adantr φw+y+yB1yA
110 rpreccl w+1w+
111 110 adantl φw+1w+
112 107 109 111 rspcdva φw+1wB11wA
113 94 adantl φw+11w=w
114 113 eleq1d φw+11wAwA
115 112 114 bitr2d φw+wA1wB
116 104 91 115 syl2anc φwA¬w=0wA1wB
117 103 116 mpbid φwA¬w=01wB
118 91 rpreccld φwA¬w=01w+
119 117 118 elind φwA¬w=01wB+
120 99 102 119 rspcdva φwA¬w=011w/xR
121 96 120 eqeltrrd φwA¬w=0w/xR
122 73 121 ifclda φwAifw=0Cw/xR
123 111 biantrud φw+1wB1wB1w+
124 115 123 bitrd φw+wA1wB1w+
125 elin 1wB+1wB1w+
126 124 125 bitr4di φw+wA1wB+
127 iftrue w=0ifw=0Cw/xR=C
128 eqeq1 w=1yw=01y=0
129 csbeq1 w=1yw/xR=1y/xR
130 128 129 ifbieq2d w=1yifw=0Cw/xR=if1y=0C1y/xR
131 1 2 55 122 126 127 130 8 9 rlimcnp φyB+if1y=0C1y/xRCwAifw=0Cw/xRKCnPJ0
132 nfcv _wifx=0CR
133 nfv xw=0
134 nfcv _xC
135 nfcsb1v _xw/xR
136 133 134 135 nfif _xifw=0Cw/xR
137 eqeq1 x=wx=0w=0
138 csbeq1a x=wR=w/xR
139 137 138 ifbieq2d x=wifx=0CR=ifw=0Cw/xR
140 132 136 139 cbvmpt xAifx=0CR=wAifw=0Cw/xR
141 140 eleq1i xAifx=0CRKCnPJ0wAifw=0Cw/xRKCnPJ0
142 131 141 bitr4di φyB+if1y=0C1y/xRCxAifx=0CRKCnPJ0
143 53 72 142 3bitr2d φyBSCxAifx=0CRKCnPJ0