Metamath Proof Explorer


Theorem rlimcnp

Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function S ( y ) = R ( 1 / y ) at zero. (Contributed by Mario Carneiro, 1-Mar-2015)

Ref Expression
Hypotheses rlimcnp.a φA0+∞
rlimcnp.0 φ0A
rlimcnp.b φB+
rlimcnp.r φxAR
rlimcnp.d φx+xA1xB
rlimcnp.c x=0R=C
rlimcnp.s x=1yR=S
rlimcnp.j J=TopOpenfld
rlimcnp.k K=J𝑡A
Assertion rlimcnp φyBSCxARKCnPJ0

Proof

Step Hyp Ref Expression
1 rlimcnp.a φA0+∞
2 rlimcnp.0 φ0A
3 rlimcnp.b φB+
4 rlimcnp.r φxAR
5 rlimcnp.d φx+xA1xB
6 rlimcnp.c x=0R=C
7 rlimcnp.s x=1yR=S
8 rlimcnp.j J=TopOpenfld
9 rlimcnp.k K=J𝑡A
10 rpreccl r+1r+
11 10 adantl φr+1r+
12 rpreccl t+1t+
13 rpcnne0 t+tt0
14 13 adantl φt+tt0
15 recrec tt011t=t
16 14 15 syl φt+11t=t
17 16 eqcomd φt+t=11t
18 oveq2 r=1t1r=11t
19 18 rspceeqv 1t+t=11tr+t=1r
20 12 17 19 syl2an2 φt+r+t=1r
21 simpr φt=1rt=1r
22 21 breq1d φt=1rt<y1r<y
23 22 imbi1d φt=1rt<ySC<z1r<ySC<z
24 23 ralbidv φt=1ryBt<ySC<zyB1r<ySC<z
25 11 20 24 rexxfrd φt+yBt<ySC<zr+yB1r<ySC<z
26 25 adantr φz+t+yBt<ySC<zr+yB1r<ySC<z
27 simplr φr+yBr+
28 3 sselda φyBy+
29 28 adantlr φr+yBy+
30 elrp r+r0<r
31 elrp y+y0<y
32 ltrec1 r0<ry0<y1r<y1y<r
33 30 31 32 syl2anb r+y+1r<y1y<r
34 27 29 33 syl2anc φr+yB1r<y1y<r
35 34 imbi1d φr+yB1r<ySC<z1y<rSC<z
36 35 ralbidva φr+yB1r<ySC<zyB1y<rSC<z
37 36 adantlr φz+r+yB1r<ySC<zyB1y<rSC<z
38 rpcn y+y
39 rpne0 y+y0
40 38 39 recrecd y+11y=y
41 28 40 syl φyB11y=y
42 simpr φyByB
43 41 42 eqeltrd φyB11yB
44 eleq1 x=1yxA1yA
45 oveq2 x=1y1x=11y
46 45 eleq1d x=1y1xB11yB
47 44 46 bibi12d x=1yxA1xB1yA11yB
48 5 ralrimiva φx+xA1xB
49 48 adantr φyBx+xA1xB
50 28 rpreccld φyB1y+
51 47 49 50 rspcdva φyB1yA11yB
52 43 51 mpbird φyB1yA
53 50 rpne0d φyB1y0
54 eldifsn 1yA01yA1y0
55 52 53 54 sylanbrc φyB1yA0
56 eldifi xA0xA
57 56 adantl φxA0xA
58 rge0ssre 0+∞
59 1 ssdifssd φA00+∞
60 59 sselda φxA0x0+∞
61 58 60 sselid φxA0x
62 0re 0
63 pnfxr +∞*
64 elico2 0+∞*x0+∞x0xx<+∞
65 62 63 64 mp2an x0+∞x0xx<+∞
66 65 simp2bi x0+∞0x
67 60 66 syl φxA00x
68 eldifsni xA0x0
69 68 adantl φxA0x0
70 61 67 69 ne0gt0d φxA00<x
71 61 70 elrpd φxA0x+
72 71 5 syldan φxA0xA1xB
73 57 72 mpbid φxA01xB
74 rpcn x+x
75 rpne0 x+x0
76 74 75 recrecd x+11x=x
77 71 76 syl φxA011x=x
78 77 eqcomd φxA0x=11x
79 oveq2 y=1x1y=11x
80 79 rspceeqv 1xBx=11xyBx=1y
81 73 78 80 syl2anc φxA0yBx=1y
82 breq1 x=1yx<r1y<r
83 7 fvoveq1d x=1yRC=SC
84 83 breq1d x=1yRC<zSC<z
85 82 84 imbi12d x=1yx<rRC<z1y<rSC<z
86 85 adantl φx=1yx<rRC<z1y<rSC<z
87 55 81 86 ralxfrd φxA0x<rRC<zyB1y<rSC<z
88 87 ad2antrr φz+r+xA0x<rRC<zyB1y<rSC<z
89 37 88 bitr4d φz+r+yB1r<ySC<zxA0x<rRC<z
90 elsni x0x=0
91 90 adantl φz+x0x=0
92 91 6 syl φz+x0R=C
93 92 oveq1d φz+x0RC=CC
94 6 eleq1d x=0RC
95 4 ralrimiva φxAR
96 94 95 2 rspcdva φC
97 96 subidd φCC=0
98 97 ad2antrr φz+x0CC=0
99 93 98 eqtrd φz+x0RC=0
100 99 abs00bd φz+x0RC=0
101 rpgt0 z+0<z
102 101 ad2antlr φz+x00<z
103 100 102 eqbrtrd φz+x0RC<z
104 103 a1d φz+x0x<rRC<z
105 104 ralrimiva φz+x0x<rRC<z
106 105 adantr φz+r+x0x<rRC<z
107 106 biantrud φz+r+xA0x<rRC<zxA0x<rRC<zx0x<rRC<z
108 ralunb xA00x<rRC<zxA0x<rRC<zx0x<rRC<z
109 107 108 bitr4di φz+r+xA0x<rRC<zxA00x<rRC<z
110 undif1 A00=A0
111 2 ad2antrr φz+r+0A
112 111 snssd φz+r+0A
113 ssequn2 0AA0=A
114 112 113 sylib φz+r+A0=A
115 110 114 eqtrid φz+r+A00=A
116 115 raleqdv φz+r+xA00x<rRC<zxAx<rRC<z
117 89 109 116 3bitrd φz+r+yB1r<ySC<zxAx<rRC<z
118 117 rexbidva φz+r+yB1r<ySC<zr+xAx<rRC<z
119 26 118 bitrd φz+t+yBt<ySC<zr+xAx<rRC<z
120 119 ralbidva φz+t+yBt<ySC<zz+r+xAx<rRC<z
121 nfv xwabsA×A0<r
122 nffvmpt1 _xxARw
123 nfcv _xabs
124 nffvmpt1 _xxAR0
125 122 123 124 nfov _xxARwabsxAR0
126 nfcv _x<
127 nfcv _xz
128 125 126 127 nfbr xxARwabsxAR0<z
129 121 128 nfim xwabsA×A0<rxARwabsxAR0<z
130 nfv wxabsA×A0<rxARxabsxAR0<z
131 oveq1 w=xwabsA×A0=xabsA×A0
132 131 breq1d w=xwabsA×A0<rxabsA×A0<r
133 fveq2 w=xxARw=xARx
134 133 oveq1d w=xxARwabsxAR0=xARxabsxAR0
135 134 breq1d w=xxARwabsxAR0<zxARxabsxAR0<z
136 132 135 imbi12d w=xwabsA×A0<rxARwabsxAR0<zxabsA×A0<rxARxabsxAR0<z
137 129 130 136 cbvralw wAwabsA×A0<rxARwabsxAR0<zxAxabsA×A0<rxARxabsxAR0<z
138 simpr φxAxA
139 2 adantr φxA0A
140 138 139 ovresd φxAxabsA×A0=xabs0
141 1 58 sstrdi φA
142 ax-resscn
143 141 142 sstrdi φA
144 143 sselda φxAx
145 0cnd φxA0
146 eqid abs=abs
147 146 cnmetdval x0xabs0=x0
148 144 145 147 syl2anc φxAxabs0=x0
149 144 subid1d φxAx0=x
150 149 fveq2d φxAx0=x
151 140 148 150 3eqtrd φxAxabsA×A0=x
152 141 sselda φxAx
153 1 sselda φxAx0+∞
154 153 66 syl φxA0x
155 152 154 absidd φxAx=x
156 151 155 eqtrd φxAxabsA×A0=x
157 156 breq1d φxAxabsA×A0<rx<r
158 eqid xAR=xAR
159 158 fvmpt2 xARxARx=R
160 138 4 159 syl2anc φxAxARx=R
161 96 adantr φxAC
162 158 6 139 161 fvmptd3 φxAxAR0=C
163 160 162 oveq12d φxAxARxabsxAR0=RabsC
164 146 cnmetdval RCRabsC=RC
165 4 161 164 syl2anc φxARabsC=RC
166 163 165 eqtrd φxAxARxabsxAR0=RC
167 166 breq1d φxAxARxabsxAR0<zRC<z
168 157 167 imbi12d φxAxabsA×A0<rxARxabsxAR0<zx<rRC<z
169 168 ralbidva φxAxabsA×A0<rxARxabsxAR0<zxAx<rRC<z
170 137 169 bitrid φwAwabsA×A0<rxARwabsxAR0<zxAx<rRC<z
171 170 rexbidv φr+wAwabsA×A0<rxARwabsxAR0<zr+xAx<rRC<z
172 171 ralbidv φz+r+wAwabsA×A0<rxARwabsxAR0<zz+r+xAx<rRC<z
173 4 fmpttd φxAR:A
174 173 biantrurd φz+r+wAwabsA×A0<rxARwabsxAR0<zxAR:Az+r+wAwabsA×A0<rxARwabsxAR0<z
175 120 172 174 3bitr2d φz+t+yBt<ySC<zxAR:Az+r+wAwabsA×A0<rxARwabsxAR0<z
176 7 eleq1d x=1yRS
177 95 adantr φyBxAR
178 176 177 52 rspcdva φyBS
179 178 ralrimiva φyBS
180 rpssre +
181 3 180 sstrdi φB
182 1red φ1
183 179 181 96 182 rlim3 φyBSCz+t1+∞yBtySC<z
184 0xr 0*
185 0lt1 0<1
186 df-ioo .=x*,y*z*|x<zz<y
187 df-ico .=x*,y*z*|xzz<y
188 xrltletr 0*1*w*0<11w0<w
189 186 187 188 ixxss1 0*0<11+∞0+∞
190 184 185 189 mp2an 1+∞0+∞
191 ioorp 0+∞=+
192 190 191 sseqtri 1+∞+
193 ssrexv 1+∞+t1+∞yBtySC<zt+yBtySC<z
194 192 193 ax-mp t1+∞yBtySC<zt+yBtySC<z
195 simplr φt+yBt+
196 180 195 sselid φt+yBt
197 181 adantr φt+B
198 197 sselda φt+yBy
199 ltle tyt<yty
200 196 198 199 syl2anc φt+yBt<yty
201 200 imim1d φt+yBtySC<zt<ySC<z
202 201 ralimdva φt+yBtySC<zyBt<ySC<z
203 202 reximdva φt+yBtySC<zt+yBt<ySC<z
204 194 203 syl5 φt1+∞yBtySC<zt+yBt<ySC<z
205 204 ralimdv φz+t1+∞yBtySC<zz+t+yBt<ySC<z
206 183 205 sylbid φyBSCz+t+yBt<ySC<z
207 ssrexv +t+yBt<ySC<ztyBt<ySC<z
208 180 207 ax-mp t+yBt<ySC<ztyBt<ySC<z
209 208 ralimi z+t+yBt<ySC<zz+tyBt<ySC<z
210 179 181 96 rlim2lt φyBSCz+tyBt<ySC<z
211 209 210 imbitrrid φz+t+yBt<ySC<zyBSC
212 206 211 impbid φyBSCz+t+yBt<ySC<z
213 cnxmet abs∞Met
214 xmetres2 abs∞MetAabsA×A∞MetA
215 213 143 214 sylancr φabsA×A∞MetA
216 213 a1i φabs∞Met
217 eqid MetOpenabsA×A=MetOpenabsA×A
218 8 cnfldtopn J=MetOpenabs
219 217 218 metcnp2 absA×A∞MetAabs∞Met0AxARMetOpenabsA×ACnPJ0xAR:Az+r+wAwabsA×A0<rxARwabsxAR0<z
220 215 216 2 219 syl3anc φxARMetOpenabsA×ACnPJ0xAR:Az+r+wAwabsA×A0<rxARwabsxAR0<z
221 175 212 220 3bitr4d φyBSCxARMetOpenabsA×ACnPJ0
222 eqid absA×A=absA×A
223 222 218 217 metrest abs∞MetAJ𝑡A=MetOpenabsA×A
224 213 143 223 sylancr φJ𝑡A=MetOpenabsA×A
225 9 224 eqtrid φK=MetOpenabsA×A
226 225 oveq1d φKCnPJ=MetOpenabsA×ACnPJ
227 226 fveq1d φKCnPJ0=MetOpenabsA×ACnPJ0
228 227 eleq2d φxARKCnPJ0xARMetOpenabsA×ACnPJ0
229 221 228 bitr4d φyBSCxARKCnPJ0