Step |
Hyp |
Ref |
Expression |
1 |
|
rlimcnp2.a |
⊢ ( 𝜑 → 𝐴 ⊆ ( 0 [,) +∞ ) ) |
2 |
|
rlimcnp2.0 |
⊢ ( 𝜑 → 0 ∈ 𝐴 ) |
3 |
|
rlimcnp2.b |
⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
4 |
|
rlimcnp2.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
5 |
|
rlimcnp2.r |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑆 ∈ ℂ ) |
6 |
|
rlimcnp2.d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 𝑦 ∈ 𝐵 ↔ ( 1 / 𝑦 ) ∈ 𝐴 ) ) |
7 |
|
rlimcnp2.s |
⊢ ( 𝑦 = ( 1 / 𝑥 ) → 𝑆 = 𝑅 ) |
8 |
|
rlimcnp2.j |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
9 |
|
rlimcnp2.k |
⊢ 𝐾 = ( 𝐽 ↾t 𝐴 ) |
10 |
|
inss1 |
⊢ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ⊆ 𝐵 |
11 |
|
resmpt |
⊢ ( ( 𝐵 ∩ ( 1 [,) +∞ ) ) ⊆ 𝐵 → ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ↾ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ) = ( 𝑦 ∈ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ↦ 𝑆 ) ) |
12 |
10 11
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ↾ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ) = ( 𝑦 ∈ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ↦ 𝑆 ) ) |
13 |
|
0xr |
⊢ 0 ∈ ℝ* |
14 |
|
0lt1 |
⊢ 0 < 1 |
15 |
|
df-ioo |
⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
16 |
|
df-ico |
⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
17 |
|
xrltletr |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( 0 < 1 ∧ 1 ≤ 𝑤 ) → 0 < 𝑤 ) ) |
18 |
15 16 17
|
ixxss1 |
⊢ ( ( 0 ∈ ℝ* ∧ 0 < 1 ) → ( 1 [,) +∞ ) ⊆ ( 0 (,) +∞ ) ) |
19 |
13 14 18
|
mp2an |
⊢ ( 1 [,) +∞ ) ⊆ ( 0 (,) +∞ ) |
20 |
|
ioorp |
⊢ ( 0 (,) +∞ ) = ℝ+ |
21 |
19 20
|
sseqtri |
⊢ ( 1 [,) +∞ ) ⊆ ℝ+ |
22 |
|
sslin |
⊢ ( ( 1 [,) +∞ ) ⊆ ℝ+ → ( 𝐵 ∩ ( 1 [,) +∞ ) ) ⊆ ( 𝐵 ∩ ℝ+ ) ) |
23 |
21 22
|
ax-mp |
⊢ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ⊆ ( 𝐵 ∩ ℝ+ ) |
24 |
|
resmpt |
⊢ ( ( 𝐵 ∩ ( 1 [,) +∞ ) ) ⊆ ( 𝐵 ∩ ℝ+ ) → ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ) = ( 𝑦 ∈ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ↦ 𝑆 ) ) |
25 |
23 24
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ) = ( 𝑦 ∈ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ↦ 𝑆 ) ) |
26 |
12 25
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ↾ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ) = ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ) ) |
27 |
|
resres |
⊢ ( ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ↾ 𝐵 ) ↾ ( 1 [,) +∞ ) ) = ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ↾ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ) |
28 |
|
resres |
⊢ ( ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ 𝐵 ) ↾ ( 1 [,) +∞ ) ) = ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ) |
29 |
26 27 28
|
3eqtr4g |
⊢ ( 𝜑 → ( ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ↾ 𝐵 ) ↾ ( 1 [,) +∞ ) ) = ( ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ 𝐵 ) ↾ ( 1 [,) +∞ ) ) ) |
30 |
5
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) : 𝐵 ⟶ ℂ ) |
31 |
30
|
ffnd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) Fn 𝐵 ) |
32 |
|
fnresdm |
⊢ ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) Fn 𝐵 → ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ↾ 𝐵 ) = ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ) |
33 |
31 32
|
syl |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ↾ 𝐵 ) = ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ) |
34 |
33
|
reseq1d |
⊢ ( 𝜑 → ( ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ↾ 𝐵 ) ↾ ( 1 [,) +∞ ) ) = ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ↾ ( 1 [,) +∞ ) ) ) |
35 |
|
elinel1 |
⊢ ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) → 𝑦 ∈ 𝐵 ) |
36 |
35 5
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) → 𝑆 ∈ ℂ ) |
37 |
36
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) : ( 𝐵 ∩ ℝ+ ) ⟶ ℂ ) |
38 |
|
frel |
⊢ ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) : ( 𝐵 ∩ ℝ+ ) ⟶ ℂ → Rel ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ) |
39 |
37 38
|
syl |
⊢ ( 𝜑 → Rel ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ) |
40 |
|
eqid |
⊢ ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) = ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) |
41 |
40 36
|
dmmptd |
⊢ ( 𝜑 → dom ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) = ( 𝐵 ∩ ℝ+ ) ) |
42 |
|
inss1 |
⊢ ( 𝐵 ∩ ℝ+ ) ⊆ 𝐵 |
43 |
41 42
|
eqsstrdi |
⊢ ( 𝜑 → dom ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ⊆ 𝐵 ) |
44 |
|
relssres |
⊢ ( ( Rel ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ∧ dom ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ⊆ 𝐵 ) → ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ 𝐵 ) = ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ) |
45 |
39 43 44
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ 𝐵 ) = ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ) |
46 |
45
|
reseq1d |
⊢ ( 𝜑 → ( ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ 𝐵 ) ↾ ( 1 [,) +∞ ) ) = ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ ( 1 [,) +∞ ) ) ) |
47 |
29 34 46
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ↾ ( 1 [,) +∞ ) ) = ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ ( 1 [,) +∞ ) ) ) |
48 |
47
|
breq1d |
⊢ ( 𝜑 → ( ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ↾ ( 1 [,) +∞ ) ) ⇝𝑟 𝐶 ↔ ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ ( 1 [,) +∞ ) ) ⇝𝑟 𝐶 ) ) |
49 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
50 |
30 3 49
|
rlimresb |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ⇝𝑟 𝐶 ↔ ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ↾ ( 1 [,) +∞ ) ) ⇝𝑟 𝐶 ) ) |
51 |
42 3
|
sstrid |
⊢ ( 𝜑 → ( 𝐵 ∩ ℝ+ ) ⊆ ℝ ) |
52 |
37 51 49
|
rlimresb |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ⇝𝑟 𝐶 ↔ ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ ( 1 [,) +∞ ) ) ⇝𝑟 𝐶 ) ) |
53 |
48 50 52
|
3bitr4d |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ⇝𝑟 𝐶 ↔ ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ⇝𝑟 𝐶 ) ) |
54 |
|
inss2 |
⊢ ( 𝐵 ∩ ℝ+ ) ⊆ ℝ+ |
55 |
54
|
a1i |
⊢ ( 𝜑 → ( 𝐵 ∩ ℝ+ ) ⊆ ℝ+ ) |
56 |
55
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) → 𝑦 ∈ ℝ+ ) |
57 |
56
|
rpreccld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) → ( 1 / 𝑦 ) ∈ ℝ+ ) |
58 |
57
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) → ( 1 / 𝑦 ) ≠ 0 ) |
59 |
58
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) → ¬ ( 1 / 𝑦 ) = 0 ) |
60 |
59
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) → if ( ( 1 / 𝑦 ) = 0 , 𝐶 , ⦋ ( 1 / 𝑦 ) / 𝑥 ⦌ 𝑅 ) = ⦋ ( 1 / 𝑦 ) / 𝑥 ⦌ 𝑅 ) |
61 |
|
oveq2 |
⊢ ( 𝑥 = ( 1 / 𝑦 ) → ( 1 / 𝑥 ) = ( 1 / ( 1 / 𝑦 ) ) ) |
62 |
|
rpcnne0 |
⊢ ( 𝑦 ∈ ℝ+ → ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) |
63 |
|
recrec |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( 1 / ( 1 / 𝑦 ) ) = 𝑦 ) |
64 |
56 62 63
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) → ( 1 / ( 1 / 𝑦 ) ) = 𝑦 ) |
65 |
61 64
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) ∧ 𝑥 = ( 1 / 𝑦 ) ) → ( 1 / 𝑥 ) = 𝑦 ) |
66 |
65
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) ∧ 𝑥 = ( 1 / 𝑦 ) ) → 𝑦 = ( 1 / 𝑥 ) ) |
67 |
66 7
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) ∧ 𝑥 = ( 1 / 𝑦 ) ) → 𝑆 = 𝑅 ) |
68 |
67
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) ∧ 𝑥 = ( 1 / 𝑦 ) ) → 𝑅 = 𝑆 ) |
69 |
57 68
|
csbied |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) → ⦋ ( 1 / 𝑦 ) / 𝑥 ⦌ 𝑅 = 𝑆 ) |
70 |
60 69
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) → if ( ( 1 / 𝑦 ) = 0 , 𝐶 , ⦋ ( 1 / 𝑦 ) / 𝑥 ⦌ 𝑅 ) = 𝑆 ) |
71 |
70
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ if ( ( 1 / 𝑦 ) = 0 , 𝐶 , ⦋ ( 1 / 𝑦 ) / 𝑥 ⦌ 𝑅 ) ) = ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ) |
72 |
71
|
breq1d |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ if ( ( 1 / 𝑦 ) = 0 , 𝐶 , ⦋ ( 1 / 𝑦 ) / 𝑥 ⦌ 𝑅 ) ) ⇝𝑟 𝐶 ↔ ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ⇝𝑟 𝐶 ) ) |
73 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ 𝑤 = 0 ) → 𝐶 ∈ ℂ ) |
74 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ( 0 [,) +∞ ) ) |
75 |
|
0re |
⊢ 0 ∈ ℝ |
76 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
77 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 𝑤 ∈ ( 0 [,) +∞ ) ↔ ( 𝑤 ∈ ℝ ∧ 0 ≤ 𝑤 ∧ 𝑤 < +∞ ) ) ) |
78 |
75 76 77
|
mp2an |
⊢ ( 𝑤 ∈ ( 0 [,) +∞ ) ↔ ( 𝑤 ∈ ℝ ∧ 0 ≤ 𝑤 ∧ 𝑤 < +∞ ) ) |
79 |
74 78
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑤 ∈ ℝ ∧ 0 ≤ 𝑤 ∧ 𝑤 < +∞ ) ) |
80 |
79
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ℝ ) |
81 |
80
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ ¬ 𝑤 = 0 ) → 𝑤 ∈ ℝ ) |
82 |
79
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → 0 ≤ 𝑤 ) |
83 |
|
leloe |
⊢ ( ( 0 ∈ ℝ ∧ 𝑤 ∈ ℝ ) → ( 0 ≤ 𝑤 ↔ ( 0 < 𝑤 ∨ 0 = 𝑤 ) ) ) |
84 |
75 80 83
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 0 ≤ 𝑤 ↔ ( 0 < 𝑤 ∨ 0 = 𝑤 ) ) ) |
85 |
82 84
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 0 < 𝑤 ∨ 0 = 𝑤 ) ) |
86 |
85
|
ord |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ¬ 0 < 𝑤 → 0 = 𝑤 ) ) |
87 |
|
eqcom |
⊢ ( 0 = 𝑤 ↔ 𝑤 = 0 ) |
88 |
86 87
|
syl6ib |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ¬ 0 < 𝑤 → 𝑤 = 0 ) ) |
89 |
88
|
con1d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ¬ 𝑤 = 0 → 0 < 𝑤 ) ) |
90 |
89
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ ¬ 𝑤 = 0 ) → 0 < 𝑤 ) |
91 |
81 90
|
elrpd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ ¬ 𝑤 = 0 ) → 𝑤 ∈ ℝ+ ) |
92 |
|
rpcnne0 |
⊢ ( 𝑤 ∈ ℝ+ → ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) |
93 |
|
recrec |
⊢ ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) → ( 1 / ( 1 / 𝑤 ) ) = 𝑤 ) |
94 |
92 93
|
syl |
⊢ ( 𝑤 ∈ ℝ+ → ( 1 / ( 1 / 𝑤 ) ) = 𝑤 ) |
95 |
91 94
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ ¬ 𝑤 = 0 ) → ( 1 / ( 1 / 𝑤 ) ) = 𝑤 ) |
96 |
95
|
csbeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ ¬ 𝑤 = 0 ) → ⦋ ( 1 / ( 1 / 𝑤 ) ) / 𝑥 ⦌ 𝑅 = ⦋ 𝑤 / 𝑥 ⦌ 𝑅 ) |
97 |
|
oveq2 |
⊢ ( 𝑦 = ( 1 / 𝑤 ) → ( 1 / 𝑦 ) = ( 1 / ( 1 / 𝑤 ) ) ) |
98 |
97
|
csbeq1d |
⊢ ( 𝑦 = ( 1 / 𝑤 ) → ⦋ ( 1 / 𝑦 ) / 𝑥 ⦌ 𝑅 = ⦋ ( 1 / ( 1 / 𝑤 ) ) / 𝑥 ⦌ 𝑅 ) |
99 |
98
|
eleq1d |
⊢ ( 𝑦 = ( 1 / 𝑤 ) → ( ⦋ ( 1 / 𝑦 ) / 𝑥 ⦌ 𝑅 ∈ ℂ ↔ ⦋ ( 1 / ( 1 / 𝑤 ) ) / 𝑥 ⦌ 𝑅 ∈ ℂ ) ) |
100 |
69 36
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) → ⦋ ( 1 / 𝑦 ) / 𝑥 ⦌ 𝑅 ∈ ℂ ) |
101 |
100
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ⦋ ( 1 / 𝑦 ) / 𝑥 ⦌ 𝑅 ∈ ℂ ) |
102 |
101
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ ¬ 𝑤 = 0 ) → ∀ 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ⦋ ( 1 / 𝑦 ) / 𝑥 ⦌ 𝑅 ∈ ℂ ) |
103 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ ¬ 𝑤 = 0 ) → 𝑤 ∈ 𝐴 ) |
104 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ ¬ 𝑤 = 0 ) → 𝜑 ) |
105 |
|
eleq1 |
⊢ ( 𝑦 = ( 1 / 𝑤 ) → ( 𝑦 ∈ 𝐵 ↔ ( 1 / 𝑤 ) ∈ 𝐵 ) ) |
106 |
97
|
eleq1d |
⊢ ( 𝑦 = ( 1 / 𝑤 ) → ( ( 1 / 𝑦 ) ∈ 𝐴 ↔ ( 1 / ( 1 / 𝑤 ) ) ∈ 𝐴 ) ) |
107 |
105 106
|
bibi12d |
⊢ ( 𝑦 = ( 1 / 𝑤 ) → ( ( 𝑦 ∈ 𝐵 ↔ ( 1 / 𝑦 ) ∈ 𝐴 ) ↔ ( ( 1 / 𝑤 ) ∈ 𝐵 ↔ ( 1 / ( 1 / 𝑤 ) ) ∈ 𝐴 ) ) ) |
108 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ( 𝑦 ∈ 𝐵 ↔ ( 1 / 𝑦 ) ∈ 𝐴 ) ) |
109 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ∀ 𝑦 ∈ ℝ+ ( 𝑦 ∈ 𝐵 ↔ ( 1 / 𝑦 ) ∈ 𝐴 ) ) |
110 |
|
rpreccl |
⊢ ( 𝑤 ∈ ℝ+ → ( 1 / 𝑤 ) ∈ ℝ+ ) |
111 |
110
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ( 1 / 𝑤 ) ∈ ℝ+ ) |
112 |
107 109 111
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ( ( 1 / 𝑤 ) ∈ 𝐵 ↔ ( 1 / ( 1 / 𝑤 ) ) ∈ 𝐴 ) ) |
113 |
94
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ( 1 / ( 1 / 𝑤 ) ) = 𝑤 ) |
114 |
113
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ( ( 1 / ( 1 / 𝑤 ) ) ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) |
115 |
112 114
|
bitr2d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ( 𝑤 ∈ 𝐴 ↔ ( 1 / 𝑤 ) ∈ 𝐵 ) ) |
116 |
104 91 115
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ ¬ 𝑤 = 0 ) → ( 𝑤 ∈ 𝐴 ↔ ( 1 / 𝑤 ) ∈ 𝐵 ) ) |
117 |
103 116
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ ¬ 𝑤 = 0 ) → ( 1 / 𝑤 ) ∈ 𝐵 ) |
118 |
91
|
rpreccld |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ ¬ 𝑤 = 0 ) → ( 1 / 𝑤 ) ∈ ℝ+ ) |
119 |
117 118
|
elind |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ ¬ 𝑤 = 0 ) → ( 1 / 𝑤 ) ∈ ( 𝐵 ∩ ℝ+ ) ) |
120 |
99 102 119
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ ¬ 𝑤 = 0 ) → ⦋ ( 1 / ( 1 / 𝑤 ) ) / 𝑥 ⦌ 𝑅 ∈ ℂ ) |
121 |
96 120
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) ∧ ¬ 𝑤 = 0 ) → ⦋ 𝑤 / 𝑥 ⦌ 𝑅 ∈ ℂ ) |
122 |
73 121
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → if ( 𝑤 = 0 , 𝐶 , ⦋ 𝑤 / 𝑥 ⦌ 𝑅 ) ∈ ℂ ) |
123 |
111
|
biantrud |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ( ( 1 / 𝑤 ) ∈ 𝐵 ↔ ( ( 1 / 𝑤 ) ∈ 𝐵 ∧ ( 1 / 𝑤 ) ∈ ℝ+ ) ) ) |
124 |
115 123
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ( 𝑤 ∈ 𝐴 ↔ ( ( 1 / 𝑤 ) ∈ 𝐵 ∧ ( 1 / 𝑤 ) ∈ ℝ+ ) ) ) |
125 |
|
elin |
⊢ ( ( 1 / 𝑤 ) ∈ ( 𝐵 ∩ ℝ+ ) ↔ ( ( 1 / 𝑤 ) ∈ 𝐵 ∧ ( 1 / 𝑤 ) ∈ ℝ+ ) ) |
126 |
124 125
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ( 𝑤 ∈ 𝐴 ↔ ( 1 / 𝑤 ) ∈ ( 𝐵 ∩ ℝ+ ) ) ) |
127 |
|
iftrue |
⊢ ( 𝑤 = 0 → if ( 𝑤 = 0 , 𝐶 , ⦋ 𝑤 / 𝑥 ⦌ 𝑅 ) = 𝐶 ) |
128 |
|
eqeq1 |
⊢ ( 𝑤 = ( 1 / 𝑦 ) → ( 𝑤 = 0 ↔ ( 1 / 𝑦 ) = 0 ) ) |
129 |
|
csbeq1 |
⊢ ( 𝑤 = ( 1 / 𝑦 ) → ⦋ 𝑤 / 𝑥 ⦌ 𝑅 = ⦋ ( 1 / 𝑦 ) / 𝑥 ⦌ 𝑅 ) |
130 |
128 129
|
ifbieq2d |
⊢ ( 𝑤 = ( 1 / 𝑦 ) → if ( 𝑤 = 0 , 𝐶 , ⦋ 𝑤 / 𝑥 ⦌ 𝑅 ) = if ( ( 1 / 𝑦 ) = 0 , 𝐶 , ⦋ ( 1 / 𝑦 ) / 𝑥 ⦌ 𝑅 ) ) |
131 |
1 2 55 122 126 127 130 8 9
|
rlimcnp |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ if ( ( 1 / 𝑦 ) = 0 , 𝐶 , ⦋ ( 1 / 𝑦 ) / 𝑥 ⦌ 𝑅 ) ) ⇝𝑟 𝐶 ↔ ( 𝑤 ∈ 𝐴 ↦ if ( 𝑤 = 0 , 𝐶 , ⦋ 𝑤 / 𝑥 ⦌ 𝑅 ) ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ 0 ) ) ) |
132 |
|
nfcv |
⊢ Ⅎ 𝑤 if ( 𝑥 = 0 , 𝐶 , 𝑅 ) |
133 |
|
nfv |
⊢ Ⅎ 𝑥 𝑤 = 0 |
134 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
135 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ 𝑅 |
136 |
133 134 135
|
nfif |
⊢ Ⅎ 𝑥 if ( 𝑤 = 0 , 𝐶 , ⦋ 𝑤 / 𝑥 ⦌ 𝑅 ) |
137 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 = 0 ↔ 𝑤 = 0 ) ) |
138 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑤 → 𝑅 = ⦋ 𝑤 / 𝑥 ⦌ 𝑅 ) |
139 |
137 138
|
ifbieq2d |
⊢ ( 𝑥 = 𝑤 → if ( 𝑥 = 0 , 𝐶 , 𝑅 ) = if ( 𝑤 = 0 , 𝐶 , ⦋ 𝑤 / 𝑥 ⦌ 𝑅 ) ) |
140 |
132 136 139
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 = 0 , 𝐶 , 𝑅 ) ) = ( 𝑤 ∈ 𝐴 ↦ if ( 𝑤 = 0 , 𝐶 , ⦋ 𝑤 / 𝑥 ⦌ 𝑅 ) ) |
141 |
140
|
eleq1i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 = 0 , 𝐶 , 𝑅 ) ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ 0 ) ↔ ( 𝑤 ∈ 𝐴 ↦ if ( 𝑤 = 0 , 𝐶 , ⦋ 𝑤 / 𝑥 ⦌ 𝑅 ) ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ 0 ) ) |
142 |
131 141
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ if ( ( 1 / 𝑦 ) = 0 , 𝐶 , ⦋ ( 1 / 𝑦 ) / 𝑥 ⦌ 𝑅 ) ) ⇝𝑟 𝐶 ↔ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 = 0 , 𝐶 , 𝑅 ) ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ 0 ) ) ) |
143 |
53 72 142
|
3bitr2d |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ⇝𝑟 𝐶 ↔ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 = 0 , 𝐶 , 𝑅 ) ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ 0 ) ) ) |