Metamath Proof Explorer


Theorem rlimcnp2

Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function S ( y ) = R ( 1 / y ) at zero. (Contributed by Mario Carneiro, 1-Mar-2015)

Ref Expression
Hypotheses rlimcnp2.a ( 𝜑𝐴 ⊆ ( 0 [,) +∞ ) )
rlimcnp2.0 ( 𝜑 → 0 ∈ 𝐴 )
rlimcnp2.b ( 𝜑𝐵 ⊆ ℝ )
rlimcnp2.c ( 𝜑𝐶 ∈ ℂ )
rlimcnp2.r ( ( 𝜑𝑦𝐵 ) → 𝑆 ∈ ℂ )
rlimcnp2.d ( ( 𝜑𝑦 ∈ ℝ+ ) → ( 𝑦𝐵 ↔ ( 1 / 𝑦 ) ∈ 𝐴 ) )
rlimcnp2.s ( 𝑦 = ( 1 / 𝑥 ) → 𝑆 = 𝑅 )
rlimcnp2.j 𝐽 = ( TopOpen ‘ ℂfld )
rlimcnp2.k 𝐾 = ( 𝐽t 𝐴 )
Assertion rlimcnp2 ( 𝜑 → ( ( 𝑦𝐵𝑆 ) ⇝𝑟 𝐶 ↔ ( 𝑥𝐴 ↦ if ( 𝑥 = 0 , 𝐶 , 𝑅 ) ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ 0 ) ) )

Proof

Step Hyp Ref Expression
1 rlimcnp2.a ( 𝜑𝐴 ⊆ ( 0 [,) +∞ ) )
2 rlimcnp2.0 ( 𝜑 → 0 ∈ 𝐴 )
3 rlimcnp2.b ( 𝜑𝐵 ⊆ ℝ )
4 rlimcnp2.c ( 𝜑𝐶 ∈ ℂ )
5 rlimcnp2.r ( ( 𝜑𝑦𝐵 ) → 𝑆 ∈ ℂ )
6 rlimcnp2.d ( ( 𝜑𝑦 ∈ ℝ+ ) → ( 𝑦𝐵 ↔ ( 1 / 𝑦 ) ∈ 𝐴 ) )
7 rlimcnp2.s ( 𝑦 = ( 1 / 𝑥 ) → 𝑆 = 𝑅 )
8 rlimcnp2.j 𝐽 = ( TopOpen ‘ ℂfld )
9 rlimcnp2.k 𝐾 = ( 𝐽t 𝐴 )
10 inss1 ( 𝐵 ∩ ( 1 [,) +∞ ) ) ⊆ 𝐵
11 resmpt ( ( 𝐵 ∩ ( 1 [,) +∞ ) ) ⊆ 𝐵 → ( ( 𝑦𝐵𝑆 ) ↾ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ) = ( 𝑦 ∈ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ↦ 𝑆 ) )
12 10 11 mp1i ( 𝜑 → ( ( 𝑦𝐵𝑆 ) ↾ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ) = ( 𝑦 ∈ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ↦ 𝑆 ) )
13 0xr 0 ∈ ℝ*
14 0lt1 0 < 1
15 df-ioo (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧 < 𝑦 ) } )
16 df-ico [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } )
17 xrltletr ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ*𝑤 ∈ ℝ* ) → ( ( 0 < 1 ∧ 1 ≤ 𝑤 ) → 0 < 𝑤 ) )
18 15 16 17 ixxss1 ( ( 0 ∈ ℝ* ∧ 0 < 1 ) → ( 1 [,) +∞ ) ⊆ ( 0 (,) +∞ ) )
19 13 14 18 mp2an ( 1 [,) +∞ ) ⊆ ( 0 (,) +∞ )
20 ioorp ( 0 (,) +∞ ) = ℝ+
21 19 20 sseqtri ( 1 [,) +∞ ) ⊆ ℝ+
22 sslin ( ( 1 [,) +∞ ) ⊆ ℝ+ → ( 𝐵 ∩ ( 1 [,) +∞ ) ) ⊆ ( 𝐵 ∩ ℝ+ ) )
23 21 22 ax-mp ( 𝐵 ∩ ( 1 [,) +∞ ) ) ⊆ ( 𝐵 ∩ ℝ+ )
24 resmpt ( ( 𝐵 ∩ ( 1 [,) +∞ ) ) ⊆ ( 𝐵 ∩ ℝ+ ) → ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ) = ( 𝑦 ∈ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ↦ 𝑆 ) )
25 23 24 mp1i ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ) = ( 𝑦 ∈ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ↦ 𝑆 ) )
26 12 25 eqtr4d ( 𝜑 → ( ( 𝑦𝐵𝑆 ) ↾ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ) = ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ ( 𝐵 ∩ ( 1 [,) +∞ ) ) ) )
27 resres ( ( ( 𝑦𝐵𝑆 ) ↾ 𝐵 ) ↾ ( 1 [,) +∞ ) ) = ( ( 𝑦𝐵𝑆 ) ↾ ( 𝐵 ∩ ( 1 [,) +∞ ) ) )
28 resres ( ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ 𝐵 ) ↾ ( 1 [,) +∞ ) ) = ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ ( 𝐵 ∩ ( 1 [,) +∞ ) ) )
29 26 27 28 3eqtr4g ( 𝜑 → ( ( ( 𝑦𝐵𝑆 ) ↾ 𝐵 ) ↾ ( 1 [,) +∞ ) ) = ( ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ 𝐵 ) ↾ ( 1 [,) +∞ ) ) )
30 5 fmpttd ( 𝜑 → ( 𝑦𝐵𝑆 ) : 𝐵 ⟶ ℂ )
31 30 ffnd ( 𝜑 → ( 𝑦𝐵𝑆 ) Fn 𝐵 )
32 fnresdm ( ( 𝑦𝐵𝑆 ) Fn 𝐵 → ( ( 𝑦𝐵𝑆 ) ↾ 𝐵 ) = ( 𝑦𝐵𝑆 ) )
33 31 32 syl ( 𝜑 → ( ( 𝑦𝐵𝑆 ) ↾ 𝐵 ) = ( 𝑦𝐵𝑆 ) )
34 33 reseq1d ( 𝜑 → ( ( ( 𝑦𝐵𝑆 ) ↾ 𝐵 ) ↾ ( 1 [,) +∞ ) ) = ( ( 𝑦𝐵𝑆 ) ↾ ( 1 [,) +∞ ) ) )
35 elinel1 ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) → 𝑦𝐵 )
36 35 5 sylan2 ( ( 𝜑𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) → 𝑆 ∈ ℂ )
37 36 fmpttd ( 𝜑 → ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) : ( 𝐵 ∩ ℝ+ ) ⟶ ℂ )
38 frel ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) : ( 𝐵 ∩ ℝ+ ) ⟶ ℂ → Rel ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) )
39 37 38 syl ( 𝜑 → Rel ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) )
40 eqid ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) = ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 )
41 40 36 dmmptd ( 𝜑 → dom ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) = ( 𝐵 ∩ ℝ+ ) )
42 inss1 ( 𝐵 ∩ ℝ+ ) ⊆ 𝐵
43 41 42 eqsstrdi ( 𝜑 → dom ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ⊆ 𝐵 )
44 relssres ( ( Rel ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ∧ dom ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ⊆ 𝐵 ) → ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ 𝐵 ) = ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) )
45 39 43 44 syl2anc ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ 𝐵 ) = ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) )
46 45 reseq1d ( 𝜑 → ( ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ 𝐵 ) ↾ ( 1 [,) +∞ ) ) = ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ ( 1 [,) +∞ ) ) )
47 29 34 46 3eqtr3d ( 𝜑 → ( ( 𝑦𝐵𝑆 ) ↾ ( 1 [,) +∞ ) ) = ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ ( 1 [,) +∞ ) ) )
48 47 breq1d ( 𝜑 → ( ( ( 𝑦𝐵𝑆 ) ↾ ( 1 [,) +∞ ) ) ⇝𝑟 𝐶 ↔ ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ ( 1 [,) +∞ ) ) ⇝𝑟 𝐶 ) )
49 1red ( 𝜑 → 1 ∈ ℝ )
50 30 3 49 rlimresb ( 𝜑 → ( ( 𝑦𝐵𝑆 ) ⇝𝑟 𝐶 ↔ ( ( 𝑦𝐵𝑆 ) ↾ ( 1 [,) +∞ ) ) ⇝𝑟 𝐶 ) )
51 42 3 sstrid ( 𝜑 → ( 𝐵 ∩ ℝ+ ) ⊆ ℝ )
52 37 51 49 rlimresb ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ⇝𝑟 𝐶 ↔ ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ↾ ( 1 [,) +∞ ) ) ⇝𝑟 𝐶 ) )
53 48 50 52 3bitr4d ( 𝜑 → ( ( 𝑦𝐵𝑆 ) ⇝𝑟 𝐶 ↔ ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ⇝𝑟 𝐶 ) )
54 inss2 ( 𝐵 ∩ ℝ+ ) ⊆ ℝ+
55 54 a1i ( 𝜑 → ( 𝐵 ∩ ℝ+ ) ⊆ ℝ+ )
56 55 sselda ( ( 𝜑𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) → 𝑦 ∈ ℝ+ )
57 56 rpreccld ( ( 𝜑𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) → ( 1 / 𝑦 ) ∈ ℝ+ )
58 57 rpne0d ( ( 𝜑𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) → ( 1 / 𝑦 ) ≠ 0 )
59 58 neneqd ( ( 𝜑𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) → ¬ ( 1 / 𝑦 ) = 0 )
60 59 iffalsed ( ( 𝜑𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) → if ( ( 1 / 𝑦 ) = 0 , 𝐶 , ( 1 / 𝑦 ) / 𝑥 𝑅 ) = ( 1 / 𝑦 ) / 𝑥 𝑅 )
61 oveq2 ( 𝑥 = ( 1 / 𝑦 ) → ( 1 / 𝑥 ) = ( 1 / ( 1 / 𝑦 ) ) )
62 rpcnne0 ( 𝑦 ∈ ℝ+ → ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) )
63 recrec ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( 1 / ( 1 / 𝑦 ) ) = 𝑦 )
64 56 62 63 3syl ( ( 𝜑𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) → ( 1 / ( 1 / 𝑦 ) ) = 𝑦 )
65 61 64 sylan9eqr ( ( ( 𝜑𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) ∧ 𝑥 = ( 1 / 𝑦 ) ) → ( 1 / 𝑥 ) = 𝑦 )
66 65 eqcomd ( ( ( 𝜑𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) ∧ 𝑥 = ( 1 / 𝑦 ) ) → 𝑦 = ( 1 / 𝑥 ) )
67 66 7 syl ( ( ( 𝜑𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) ∧ 𝑥 = ( 1 / 𝑦 ) ) → 𝑆 = 𝑅 )
68 67 eqcomd ( ( ( 𝜑𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) ∧ 𝑥 = ( 1 / 𝑦 ) ) → 𝑅 = 𝑆 )
69 57 68 csbied ( ( 𝜑𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) → ( 1 / 𝑦 ) / 𝑥 𝑅 = 𝑆 )
70 60 69 eqtrd ( ( 𝜑𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) → if ( ( 1 / 𝑦 ) = 0 , 𝐶 , ( 1 / 𝑦 ) / 𝑥 𝑅 ) = 𝑆 )
71 70 mpteq2dva ( 𝜑 → ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ if ( ( 1 / 𝑦 ) = 0 , 𝐶 , ( 1 / 𝑦 ) / 𝑥 𝑅 ) ) = ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) )
72 71 breq1d ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ if ( ( 1 / 𝑦 ) = 0 , 𝐶 , ( 1 / 𝑦 ) / 𝑥 𝑅 ) ) ⇝𝑟 𝐶 ↔ ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ 𝑆 ) ⇝𝑟 𝐶 ) )
73 4 ad2antrr ( ( ( 𝜑𝑤𝐴 ) ∧ 𝑤 = 0 ) → 𝐶 ∈ ℂ )
74 1 sselda ( ( 𝜑𝑤𝐴 ) → 𝑤 ∈ ( 0 [,) +∞ ) )
75 0re 0 ∈ ℝ
76 pnfxr +∞ ∈ ℝ*
77 elico2 ( ( 0 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 𝑤 ∈ ( 0 [,) +∞ ) ↔ ( 𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < +∞ ) ) )
78 75 76 77 mp2an ( 𝑤 ∈ ( 0 [,) +∞ ) ↔ ( 𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < +∞ ) )
79 74 78 sylib ( ( 𝜑𝑤𝐴 ) → ( 𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 < +∞ ) )
80 79 simp1d ( ( 𝜑𝑤𝐴 ) → 𝑤 ∈ ℝ )
81 80 adantr ( ( ( 𝜑𝑤𝐴 ) ∧ ¬ 𝑤 = 0 ) → 𝑤 ∈ ℝ )
82 79 simp2d ( ( 𝜑𝑤𝐴 ) → 0 ≤ 𝑤 )
83 leloe ( ( 0 ∈ ℝ ∧ 𝑤 ∈ ℝ ) → ( 0 ≤ 𝑤 ↔ ( 0 < 𝑤 ∨ 0 = 𝑤 ) ) )
84 75 80 83 sylancr ( ( 𝜑𝑤𝐴 ) → ( 0 ≤ 𝑤 ↔ ( 0 < 𝑤 ∨ 0 = 𝑤 ) ) )
85 82 84 mpbid ( ( 𝜑𝑤𝐴 ) → ( 0 < 𝑤 ∨ 0 = 𝑤 ) )
86 85 ord ( ( 𝜑𝑤𝐴 ) → ( ¬ 0 < 𝑤 → 0 = 𝑤 ) )
87 eqcom ( 0 = 𝑤𝑤 = 0 )
88 86 87 syl6ib ( ( 𝜑𝑤𝐴 ) → ( ¬ 0 < 𝑤𝑤 = 0 ) )
89 88 con1d ( ( 𝜑𝑤𝐴 ) → ( ¬ 𝑤 = 0 → 0 < 𝑤 ) )
90 89 imp ( ( ( 𝜑𝑤𝐴 ) ∧ ¬ 𝑤 = 0 ) → 0 < 𝑤 )
91 81 90 elrpd ( ( ( 𝜑𝑤𝐴 ) ∧ ¬ 𝑤 = 0 ) → 𝑤 ∈ ℝ+ )
92 rpcnne0 ( 𝑤 ∈ ℝ+ → ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) )
93 recrec ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) → ( 1 / ( 1 / 𝑤 ) ) = 𝑤 )
94 92 93 syl ( 𝑤 ∈ ℝ+ → ( 1 / ( 1 / 𝑤 ) ) = 𝑤 )
95 91 94 syl ( ( ( 𝜑𝑤𝐴 ) ∧ ¬ 𝑤 = 0 ) → ( 1 / ( 1 / 𝑤 ) ) = 𝑤 )
96 95 csbeq1d ( ( ( 𝜑𝑤𝐴 ) ∧ ¬ 𝑤 = 0 ) → ( 1 / ( 1 / 𝑤 ) ) / 𝑥 𝑅 = 𝑤 / 𝑥 𝑅 )
97 oveq2 ( 𝑦 = ( 1 / 𝑤 ) → ( 1 / 𝑦 ) = ( 1 / ( 1 / 𝑤 ) ) )
98 97 csbeq1d ( 𝑦 = ( 1 / 𝑤 ) → ( 1 / 𝑦 ) / 𝑥 𝑅 = ( 1 / ( 1 / 𝑤 ) ) / 𝑥 𝑅 )
99 98 eleq1d ( 𝑦 = ( 1 / 𝑤 ) → ( ( 1 / 𝑦 ) / 𝑥 𝑅 ∈ ℂ ↔ ( 1 / ( 1 / 𝑤 ) ) / 𝑥 𝑅 ∈ ℂ ) )
100 69 36 eqeltrd ( ( 𝜑𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ) → ( 1 / 𝑦 ) / 𝑥 𝑅 ∈ ℂ )
101 100 ralrimiva ( 𝜑 → ∀ 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ( 1 / 𝑦 ) / 𝑥 𝑅 ∈ ℂ )
102 101 ad2antrr ( ( ( 𝜑𝑤𝐴 ) ∧ ¬ 𝑤 = 0 ) → ∀ 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ( 1 / 𝑦 ) / 𝑥 𝑅 ∈ ℂ )
103 simplr ( ( ( 𝜑𝑤𝐴 ) ∧ ¬ 𝑤 = 0 ) → 𝑤𝐴 )
104 simpll ( ( ( 𝜑𝑤𝐴 ) ∧ ¬ 𝑤 = 0 ) → 𝜑 )
105 eleq1 ( 𝑦 = ( 1 / 𝑤 ) → ( 𝑦𝐵 ↔ ( 1 / 𝑤 ) ∈ 𝐵 ) )
106 97 eleq1d ( 𝑦 = ( 1 / 𝑤 ) → ( ( 1 / 𝑦 ) ∈ 𝐴 ↔ ( 1 / ( 1 / 𝑤 ) ) ∈ 𝐴 ) )
107 105 106 bibi12d ( 𝑦 = ( 1 / 𝑤 ) → ( ( 𝑦𝐵 ↔ ( 1 / 𝑦 ) ∈ 𝐴 ) ↔ ( ( 1 / 𝑤 ) ∈ 𝐵 ↔ ( 1 / ( 1 / 𝑤 ) ) ∈ 𝐴 ) ) )
108 6 ralrimiva ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ( 𝑦𝐵 ↔ ( 1 / 𝑦 ) ∈ 𝐴 ) )
109 108 adantr ( ( 𝜑𝑤 ∈ ℝ+ ) → ∀ 𝑦 ∈ ℝ+ ( 𝑦𝐵 ↔ ( 1 / 𝑦 ) ∈ 𝐴 ) )
110 rpreccl ( 𝑤 ∈ ℝ+ → ( 1 / 𝑤 ) ∈ ℝ+ )
111 110 adantl ( ( 𝜑𝑤 ∈ ℝ+ ) → ( 1 / 𝑤 ) ∈ ℝ+ )
112 107 109 111 rspcdva ( ( 𝜑𝑤 ∈ ℝ+ ) → ( ( 1 / 𝑤 ) ∈ 𝐵 ↔ ( 1 / ( 1 / 𝑤 ) ) ∈ 𝐴 ) )
113 94 adantl ( ( 𝜑𝑤 ∈ ℝ+ ) → ( 1 / ( 1 / 𝑤 ) ) = 𝑤 )
114 113 eleq1d ( ( 𝜑𝑤 ∈ ℝ+ ) → ( ( 1 / ( 1 / 𝑤 ) ) ∈ 𝐴𝑤𝐴 ) )
115 112 114 bitr2d ( ( 𝜑𝑤 ∈ ℝ+ ) → ( 𝑤𝐴 ↔ ( 1 / 𝑤 ) ∈ 𝐵 ) )
116 104 91 115 syl2anc ( ( ( 𝜑𝑤𝐴 ) ∧ ¬ 𝑤 = 0 ) → ( 𝑤𝐴 ↔ ( 1 / 𝑤 ) ∈ 𝐵 ) )
117 103 116 mpbid ( ( ( 𝜑𝑤𝐴 ) ∧ ¬ 𝑤 = 0 ) → ( 1 / 𝑤 ) ∈ 𝐵 )
118 91 rpreccld ( ( ( 𝜑𝑤𝐴 ) ∧ ¬ 𝑤 = 0 ) → ( 1 / 𝑤 ) ∈ ℝ+ )
119 117 118 elind ( ( ( 𝜑𝑤𝐴 ) ∧ ¬ 𝑤 = 0 ) → ( 1 / 𝑤 ) ∈ ( 𝐵 ∩ ℝ+ ) )
120 99 102 119 rspcdva ( ( ( 𝜑𝑤𝐴 ) ∧ ¬ 𝑤 = 0 ) → ( 1 / ( 1 / 𝑤 ) ) / 𝑥 𝑅 ∈ ℂ )
121 96 120 eqeltrrd ( ( ( 𝜑𝑤𝐴 ) ∧ ¬ 𝑤 = 0 ) → 𝑤 / 𝑥 𝑅 ∈ ℂ )
122 73 121 ifclda ( ( 𝜑𝑤𝐴 ) → if ( 𝑤 = 0 , 𝐶 , 𝑤 / 𝑥 𝑅 ) ∈ ℂ )
123 111 biantrud ( ( 𝜑𝑤 ∈ ℝ+ ) → ( ( 1 / 𝑤 ) ∈ 𝐵 ↔ ( ( 1 / 𝑤 ) ∈ 𝐵 ∧ ( 1 / 𝑤 ) ∈ ℝ+ ) ) )
124 115 123 bitrd ( ( 𝜑𝑤 ∈ ℝ+ ) → ( 𝑤𝐴 ↔ ( ( 1 / 𝑤 ) ∈ 𝐵 ∧ ( 1 / 𝑤 ) ∈ ℝ+ ) ) )
125 elin ( ( 1 / 𝑤 ) ∈ ( 𝐵 ∩ ℝ+ ) ↔ ( ( 1 / 𝑤 ) ∈ 𝐵 ∧ ( 1 / 𝑤 ) ∈ ℝ+ ) )
126 124 125 bitr4di ( ( 𝜑𝑤 ∈ ℝ+ ) → ( 𝑤𝐴 ↔ ( 1 / 𝑤 ) ∈ ( 𝐵 ∩ ℝ+ ) ) )
127 iftrue ( 𝑤 = 0 → if ( 𝑤 = 0 , 𝐶 , 𝑤 / 𝑥 𝑅 ) = 𝐶 )
128 eqeq1 ( 𝑤 = ( 1 / 𝑦 ) → ( 𝑤 = 0 ↔ ( 1 / 𝑦 ) = 0 ) )
129 csbeq1 ( 𝑤 = ( 1 / 𝑦 ) → 𝑤 / 𝑥 𝑅 = ( 1 / 𝑦 ) / 𝑥 𝑅 )
130 128 129 ifbieq2d ( 𝑤 = ( 1 / 𝑦 ) → if ( 𝑤 = 0 , 𝐶 , 𝑤 / 𝑥 𝑅 ) = if ( ( 1 / 𝑦 ) = 0 , 𝐶 , ( 1 / 𝑦 ) / 𝑥 𝑅 ) )
131 1 2 55 122 126 127 130 8 9 rlimcnp ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ if ( ( 1 / 𝑦 ) = 0 , 𝐶 , ( 1 / 𝑦 ) / 𝑥 𝑅 ) ) ⇝𝑟 𝐶 ↔ ( 𝑤𝐴 ↦ if ( 𝑤 = 0 , 𝐶 , 𝑤 / 𝑥 𝑅 ) ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ 0 ) ) )
132 nfcv 𝑤 if ( 𝑥 = 0 , 𝐶 , 𝑅 )
133 nfv 𝑥 𝑤 = 0
134 nfcv 𝑥 𝐶
135 nfcsb1v 𝑥 𝑤 / 𝑥 𝑅
136 133 134 135 nfif 𝑥 if ( 𝑤 = 0 , 𝐶 , 𝑤 / 𝑥 𝑅 )
137 eqeq1 ( 𝑥 = 𝑤 → ( 𝑥 = 0 ↔ 𝑤 = 0 ) )
138 csbeq1a ( 𝑥 = 𝑤𝑅 = 𝑤 / 𝑥 𝑅 )
139 137 138 ifbieq2d ( 𝑥 = 𝑤 → if ( 𝑥 = 0 , 𝐶 , 𝑅 ) = if ( 𝑤 = 0 , 𝐶 , 𝑤 / 𝑥 𝑅 ) )
140 132 136 139 cbvmpt ( 𝑥𝐴 ↦ if ( 𝑥 = 0 , 𝐶 , 𝑅 ) ) = ( 𝑤𝐴 ↦ if ( 𝑤 = 0 , 𝐶 , 𝑤 / 𝑥 𝑅 ) )
141 140 eleq1i ( ( 𝑥𝐴 ↦ if ( 𝑥 = 0 , 𝐶 , 𝑅 ) ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ 0 ) ↔ ( 𝑤𝐴 ↦ if ( 𝑤 = 0 , 𝐶 , 𝑤 / 𝑥 𝑅 ) ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ 0 ) )
142 131 141 bitr4di ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 ∩ ℝ+ ) ↦ if ( ( 1 / 𝑦 ) = 0 , 𝐶 , ( 1 / 𝑦 ) / 𝑥 𝑅 ) ) ⇝𝑟 𝐶 ↔ ( 𝑥𝐴 ↦ if ( 𝑥 = 0 , 𝐶 , 𝑅 ) ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ 0 ) ) )
143 53 72 142 3bitr2d ( 𝜑 → ( ( 𝑦𝐵𝑆 ) ⇝𝑟 𝐶 ↔ ( 𝑥𝐴 ↦ if ( 𝑥 = 0 , 𝐶 , 𝑅 ) ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ 0 ) ) )