| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rlimcnp2.a | ⊢ ( 𝜑  →  𝐴  ⊆  ( 0 [,) +∞ ) ) | 
						
							| 2 |  | rlimcnp2.0 | ⊢ ( 𝜑  →  0  ∈  𝐴 ) | 
						
							| 3 |  | rlimcnp2.b | ⊢ ( 𝜑  →  𝐵  ⊆  ℝ ) | 
						
							| 4 |  | rlimcnp2.c | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 5 |  | rlimcnp2.r | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  𝑆  ∈  ℂ ) | 
						
							| 6 |  | rlimcnp2.d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  →  ( 𝑦  ∈  𝐵  ↔  ( 1  /  𝑦 )  ∈  𝐴 ) ) | 
						
							| 7 |  | rlimcnp2.s | ⊢ ( 𝑦  =  ( 1  /  𝑥 )  →  𝑆  =  𝑅 ) | 
						
							| 8 |  | rlimcnp2.j | ⊢ 𝐽  =  ( TopOpen ‘ ℂfld ) | 
						
							| 9 |  | rlimcnp2.k | ⊢ 𝐾  =  ( 𝐽  ↾t  𝐴 ) | 
						
							| 10 |  | inss1 | ⊢ ( 𝐵  ∩  ( 1 [,) +∞ ) )  ⊆  𝐵 | 
						
							| 11 |  | resmpt | ⊢ ( ( 𝐵  ∩  ( 1 [,) +∞ ) )  ⊆  𝐵  →  ( ( 𝑦  ∈  𝐵  ↦  𝑆 )  ↾  ( 𝐵  ∩  ( 1 [,) +∞ ) ) )  =  ( 𝑦  ∈  ( 𝐵  ∩  ( 1 [,) +∞ ) )  ↦  𝑆 ) ) | 
						
							| 12 | 10 11 | mp1i | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐵  ↦  𝑆 )  ↾  ( 𝐵  ∩  ( 1 [,) +∞ ) ) )  =  ( 𝑦  ∈  ( 𝐵  ∩  ( 1 [,) +∞ ) )  ↦  𝑆 ) ) | 
						
							| 13 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 14 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 15 |  | df-ioo | ⊢ (,)  =  ( 𝑥  ∈  ℝ* ,  𝑦  ∈  ℝ*  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  <  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 16 |  | df-ico | ⊢ [,)  =  ( 𝑥  ∈  ℝ* ,  𝑦  ∈  ℝ*  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 17 |  | xrltletr | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ*  ∧  𝑤  ∈  ℝ* )  →  ( ( 0  <  1  ∧  1  ≤  𝑤 )  →  0  <  𝑤 ) ) | 
						
							| 18 | 15 16 17 | ixxss1 | ⊢ ( ( 0  ∈  ℝ*  ∧  0  <  1 )  →  ( 1 [,) +∞ )  ⊆  ( 0 (,) +∞ ) ) | 
						
							| 19 | 13 14 18 | mp2an | ⊢ ( 1 [,) +∞ )  ⊆  ( 0 (,) +∞ ) | 
						
							| 20 |  | ioorp | ⊢ ( 0 (,) +∞ )  =  ℝ+ | 
						
							| 21 | 19 20 | sseqtri | ⊢ ( 1 [,) +∞ )  ⊆  ℝ+ | 
						
							| 22 |  | sslin | ⊢ ( ( 1 [,) +∞ )  ⊆  ℝ+  →  ( 𝐵  ∩  ( 1 [,) +∞ ) )  ⊆  ( 𝐵  ∩  ℝ+ ) ) | 
						
							| 23 | 21 22 | ax-mp | ⊢ ( 𝐵  ∩  ( 1 [,) +∞ ) )  ⊆  ( 𝐵  ∩  ℝ+ ) | 
						
							| 24 |  | resmpt | ⊢ ( ( 𝐵  ∩  ( 1 [,) +∞ ) )  ⊆  ( 𝐵  ∩  ℝ+ )  →  ( ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 )  ↾  ( 𝐵  ∩  ( 1 [,) +∞ ) ) )  =  ( 𝑦  ∈  ( 𝐵  ∩  ( 1 [,) +∞ ) )  ↦  𝑆 ) ) | 
						
							| 25 | 23 24 | mp1i | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 )  ↾  ( 𝐵  ∩  ( 1 [,) +∞ ) ) )  =  ( 𝑦  ∈  ( 𝐵  ∩  ( 1 [,) +∞ ) )  ↦  𝑆 ) ) | 
						
							| 26 | 12 25 | eqtr4d | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐵  ↦  𝑆 )  ↾  ( 𝐵  ∩  ( 1 [,) +∞ ) ) )  =  ( ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 )  ↾  ( 𝐵  ∩  ( 1 [,) +∞ ) ) ) ) | 
						
							| 27 |  | resres | ⊢ ( ( ( 𝑦  ∈  𝐵  ↦  𝑆 )  ↾  𝐵 )  ↾  ( 1 [,) +∞ ) )  =  ( ( 𝑦  ∈  𝐵  ↦  𝑆 )  ↾  ( 𝐵  ∩  ( 1 [,) +∞ ) ) ) | 
						
							| 28 |  | resres | ⊢ ( ( ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 )  ↾  𝐵 )  ↾  ( 1 [,) +∞ ) )  =  ( ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 )  ↾  ( 𝐵  ∩  ( 1 [,) +∞ ) ) ) | 
						
							| 29 | 26 27 28 | 3eqtr4g | ⊢ ( 𝜑  →  ( ( ( 𝑦  ∈  𝐵  ↦  𝑆 )  ↾  𝐵 )  ↾  ( 1 [,) +∞ ) )  =  ( ( ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 )  ↾  𝐵 )  ↾  ( 1 [,) +∞ ) ) ) | 
						
							| 30 | 5 | fmpttd | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐵  ↦  𝑆 ) : 𝐵 ⟶ ℂ ) | 
						
							| 31 | 30 | ffnd | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐵  ↦  𝑆 )  Fn  𝐵 ) | 
						
							| 32 |  | fnresdm | ⊢ ( ( 𝑦  ∈  𝐵  ↦  𝑆 )  Fn  𝐵  →  ( ( 𝑦  ∈  𝐵  ↦  𝑆 )  ↾  𝐵 )  =  ( 𝑦  ∈  𝐵  ↦  𝑆 ) ) | 
						
							| 33 | 31 32 | syl | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐵  ↦  𝑆 )  ↾  𝐵 )  =  ( 𝑦  ∈  𝐵  ↦  𝑆 ) ) | 
						
							| 34 | 33 | reseq1d | ⊢ ( 𝜑  →  ( ( ( 𝑦  ∈  𝐵  ↦  𝑆 )  ↾  𝐵 )  ↾  ( 1 [,) +∞ ) )  =  ( ( 𝑦  ∈  𝐵  ↦  𝑆 )  ↾  ( 1 [,) +∞ ) ) ) | 
						
							| 35 |  | elinel1 | ⊢ ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  →  𝑦  ∈  𝐵 ) | 
						
							| 36 | 35 5 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐵  ∩  ℝ+ ) )  →  𝑆  ∈  ℂ ) | 
						
							| 37 | 36 | fmpttd | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 ) : ( 𝐵  ∩  ℝ+ ) ⟶ ℂ ) | 
						
							| 38 |  | frel | ⊢ ( ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 ) : ( 𝐵  ∩  ℝ+ ) ⟶ ℂ  →  Rel  ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( 𝜑  →  Rel  ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 ) ) | 
						
							| 40 |  | eqid | ⊢ ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 )  =  ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 ) | 
						
							| 41 | 40 36 | dmmptd | ⊢ ( 𝜑  →  dom  ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 )  =  ( 𝐵  ∩  ℝ+ ) ) | 
						
							| 42 |  | inss1 | ⊢ ( 𝐵  ∩  ℝ+ )  ⊆  𝐵 | 
						
							| 43 | 41 42 | eqsstrdi | ⊢ ( 𝜑  →  dom  ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 )  ⊆  𝐵 ) | 
						
							| 44 |  | relssres | ⊢ ( ( Rel  ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 )  ∧  dom  ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 )  ⊆  𝐵 )  →  ( ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 )  ↾  𝐵 )  =  ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 ) ) | 
						
							| 45 | 39 43 44 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 )  ↾  𝐵 )  =  ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 ) ) | 
						
							| 46 | 45 | reseq1d | ⊢ ( 𝜑  →  ( ( ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 )  ↾  𝐵 )  ↾  ( 1 [,) +∞ ) )  =  ( ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 )  ↾  ( 1 [,) +∞ ) ) ) | 
						
							| 47 | 29 34 46 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐵  ↦  𝑆 )  ↾  ( 1 [,) +∞ ) )  =  ( ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 )  ↾  ( 1 [,) +∞ ) ) ) | 
						
							| 48 | 47 | breq1d | ⊢ ( 𝜑  →  ( ( ( 𝑦  ∈  𝐵  ↦  𝑆 )  ↾  ( 1 [,) +∞ ) )  ⇝𝑟  𝐶  ↔  ( ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 )  ↾  ( 1 [,) +∞ ) )  ⇝𝑟  𝐶 ) ) | 
						
							| 49 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 50 | 30 3 49 | rlimresb | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐵  ↦  𝑆 )  ⇝𝑟  𝐶  ↔  ( ( 𝑦  ∈  𝐵  ↦  𝑆 )  ↾  ( 1 [,) +∞ ) )  ⇝𝑟  𝐶 ) ) | 
						
							| 51 | 42 3 | sstrid | ⊢ ( 𝜑  →  ( 𝐵  ∩  ℝ+ )  ⊆  ℝ ) | 
						
							| 52 | 37 51 49 | rlimresb | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 )  ⇝𝑟  𝐶  ↔  ( ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 )  ↾  ( 1 [,) +∞ ) )  ⇝𝑟  𝐶 ) ) | 
						
							| 53 | 48 50 52 | 3bitr4d | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐵  ↦  𝑆 )  ⇝𝑟  𝐶  ↔  ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 )  ⇝𝑟  𝐶 ) ) | 
						
							| 54 |  | inss2 | ⊢ ( 𝐵  ∩  ℝ+ )  ⊆  ℝ+ | 
						
							| 55 | 54 | a1i | ⊢ ( 𝜑  →  ( 𝐵  ∩  ℝ+ )  ⊆  ℝ+ ) | 
						
							| 56 | 55 | sselda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐵  ∩  ℝ+ ) )  →  𝑦  ∈  ℝ+ ) | 
						
							| 57 | 56 | rpreccld | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐵  ∩  ℝ+ ) )  →  ( 1  /  𝑦 )  ∈  ℝ+ ) | 
						
							| 58 | 57 | rpne0d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐵  ∩  ℝ+ ) )  →  ( 1  /  𝑦 )  ≠  0 ) | 
						
							| 59 | 58 | neneqd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐵  ∩  ℝ+ ) )  →  ¬  ( 1  /  𝑦 )  =  0 ) | 
						
							| 60 | 59 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐵  ∩  ℝ+ ) )  →  if ( ( 1  /  𝑦 )  =  0 ,  𝐶 ,  ⦋ ( 1  /  𝑦 )  /  𝑥 ⦌ 𝑅 )  =  ⦋ ( 1  /  𝑦 )  /  𝑥 ⦌ 𝑅 ) | 
						
							| 61 |  | oveq2 | ⊢ ( 𝑥  =  ( 1  /  𝑦 )  →  ( 1  /  𝑥 )  =  ( 1  /  ( 1  /  𝑦 ) ) ) | 
						
							| 62 |  | rpcnne0 | ⊢ ( 𝑦  ∈  ℝ+  →  ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  0 ) ) | 
						
							| 63 |  | recrec | ⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  0 )  →  ( 1  /  ( 1  /  𝑦 ) )  =  𝑦 ) | 
						
							| 64 | 56 62 63 | 3syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐵  ∩  ℝ+ ) )  →  ( 1  /  ( 1  /  𝑦 ) )  =  𝑦 ) | 
						
							| 65 | 61 64 | sylan9eqr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝐵  ∩  ℝ+ ) )  ∧  𝑥  =  ( 1  /  𝑦 ) )  →  ( 1  /  𝑥 )  =  𝑦 ) | 
						
							| 66 | 65 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝐵  ∩  ℝ+ ) )  ∧  𝑥  =  ( 1  /  𝑦 ) )  →  𝑦  =  ( 1  /  𝑥 ) ) | 
						
							| 67 | 66 7 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝐵  ∩  ℝ+ ) )  ∧  𝑥  =  ( 1  /  𝑦 ) )  →  𝑆  =  𝑅 ) | 
						
							| 68 | 67 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝐵  ∩  ℝ+ ) )  ∧  𝑥  =  ( 1  /  𝑦 ) )  →  𝑅  =  𝑆 ) | 
						
							| 69 | 57 68 | csbied | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐵  ∩  ℝ+ ) )  →  ⦋ ( 1  /  𝑦 )  /  𝑥 ⦌ 𝑅  =  𝑆 ) | 
						
							| 70 | 60 69 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐵  ∩  ℝ+ ) )  →  if ( ( 1  /  𝑦 )  =  0 ,  𝐶 ,  ⦋ ( 1  /  𝑦 )  /  𝑥 ⦌ 𝑅 )  =  𝑆 ) | 
						
							| 71 | 70 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  if ( ( 1  /  𝑦 )  =  0 ,  𝐶 ,  ⦋ ( 1  /  𝑦 )  /  𝑥 ⦌ 𝑅 ) )  =  ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 ) ) | 
						
							| 72 | 71 | breq1d | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  if ( ( 1  /  𝑦 )  =  0 ,  𝐶 ,  ⦋ ( 1  /  𝑦 )  /  𝑥 ⦌ 𝑅 ) )  ⇝𝑟  𝐶  ↔  ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  𝑆 )  ⇝𝑟  𝐶 ) ) | 
						
							| 73 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  𝑤  =  0 )  →  𝐶  ∈  ℂ ) | 
						
							| 74 | 1 | sselda | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  𝑤  ∈  ( 0 [,) +∞ ) ) | 
						
							| 75 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 76 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 77 |  | elico2 | ⊢ ( ( 0  ∈  ℝ  ∧  +∞  ∈  ℝ* )  →  ( 𝑤  ∈  ( 0 [,) +∞ )  ↔  ( 𝑤  ∈  ℝ  ∧  0  ≤  𝑤  ∧  𝑤  <  +∞ ) ) ) | 
						
							| 78 | 75 76 77 | mp2an | ⊢ ( 𝑤  ∈  ( 0 [,) +∞ )  ↔  ( 𝑤  ∈  ℝ  ∧  0  ≤  𝑤  ∧  𝑤  <  +∞ ) ) | 
						
							| 79 | 74 78 | sylib | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( 𝑤  ∈  ℝ  ∧  0  ≤  𝑤  ∧  𝑤  <  +∞ ) ) | 
						
							| 80 | 79 | simp1d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  𝑤  ∈  ℝ ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  ¬  𝑤  =  0 )  →  𝑤  ∈  ℝ ) | 
						
							| 82 | 79 | simp2d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  0  ≤  𝑤 ) | 
						
							| 83 |  | leloe | ⊢ ( ( 0  ∈  ℝ  ∧  𝑤  ∈  ℝ )  →  ( 0  ≤  𝑤  ↔  ( 0  <  𝑤  ∨  0  =  𝑤 ) ) ) | 
						
							| 84 | 75 80 83 | sylancr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( 0  ≤  𝑤  ↔  ( 0  <  𝑤  ∨  0  =  𝑤 ) ) ) | 
						
							| 85 | 82 84 | mpbid | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( 0  <  𝑤  ∨  0  =  𝑤 ) ) | 
						
							| 86 | 85 | ord | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( ¬  0  <  𝑤  →  0  =  𝑤 ) ) | 
						
							| 87 |  | eqcom | ⊢ ( 0  =  𝑤  ↔  𝑤  =  0 ) | 
						
							| 88 | 86 87 | imbitrdi | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( ¬  0  <  𝑤  →  𝑤  =  0 ) ) | 
						
							| 89 | 88 | con1d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  ( ¬  𝑤  =  0  →  0  <  𝑤 ) ) | 
						
							| 90 | 89 | imp | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  ¬  𝑤  =  0 )  →  0  <  𝑤 ) | 
						
							| 91 | 81 90 | elrpd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  ¬  𝑤  =  0 )  →  𝑤  ∈  ℝ+ ) | 
						
							| 92 |  | rpcnne0 | ⊢ ( 𝑤  ∈  ℝ+  →  ( 𝑤  ∈  ℂ  ∧  𝑤  ≠  0 ) ) | 
						
							| 93 |  | recrec | ⊢ ( ( 𝑤  ∈  ℂ  ∧  𝑤  ≠  0 )  →  ( 1  /  ( 1  /  𝑤 ) )  =  𝑤 ) | 
						
							| 94 | 92 93 | syl | ⊢ ( 𝑤  ∈  ℝ+  →  ( 1  /  ( 1  /  𝑤 ) )  =  𝑤 ) | 
						
							| 95 | 91 94 | syl | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  ¬  𝑤  =  0 )  →  ( 1  /  ( 1  /  𝑤 ) )  =  𝑤 ) | 
						
							| 96 | 95 | csbeq1d | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  ¬  𝑤  =  0 )  →  ⦋ ( 1  /  ( 1  /  𝑤 ) )  /  𝑥 ⦌ 𝑅  =  ⦋ 𝑤  /  𝑥 ⦌ 𝑅 ) | 
						
							| 97 |  | oveq2 | ⊢ ( 𝑦  =  ( 1  /  𝑤 )  →  ( 1  /  𝑦 )  =  ( 1  /  ( 1  /  𝑤 ) ) ) | 
						
							| 98 | 97 | csbeq1d | ⊢ ( 𝑦  =  ( 1  /  𝑤 )  →  ⦋ ( 1  /  𝑦 )  /  𝑥 ⦌ 𝑅  =  ⦋ ( 1  /  ( 1  /  𝑤 ) )  /  𝑥 ⦌ 𝑅 ) | 
						
							| 99 | 98 | eleq1d | ⊢ ( 𝑦  =  ( 1  /  𝑤 )  →  ( ⦋ ( 1  /  𝑦 )  /  𝑥 ⦌ 𝑅  ∈  ℂ  ↔  ⦋ ( 1  /  ( 1  /  𝑤 ) )  /  𝑥 ⦌ 𝑅  ∈  ℂ ) ) | 
						
							| 100 | 69 36 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐵  ∩  ℝ+ ) )  →  ⦋ ( 1  /  𝑦 )  /  𝑥 ⦌ 𝑅  ∈  ℂ ) | 
						
							| 101 | 100 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ( 𝐵  ∩  ℝ+ ) ⦋ ( 1  /  𝑦 )  /  𝑥 ⦌ 𝑅  ∈  ℂ ) | 
						
							| 102 | 101 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  ¬  𝑤  =  0 )  →  ∀ 𝑦  ∈  ( 𝐵  ∩  ℝ+ ) ⦋ ( 1  /  𝑦 )  /  𝑥 ⦌ 𝑅  ∈  ℂ ) | 
						
							| 103 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  ¬  𝑤  =  0 )  →  𝑤  ∈  𝐴 ) | 
						
							| 104 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  ¬  𝑤  =  0 )  →  𝜑 ) | 
						
							| 105 |  | eleq1 | ⊢ ( 𝑦  =  ( 1  /  𝑤 )  →  ( 𝑦  ∈  𝐵  ↔  ( 1  /  𝑤 )  ∈  𝐵 ) ) | 
						
							| 106 | 97 | eleq1d | ⊢ ( 𝑦  =  ( 1  /  𝑤 )  →  ( ( 1  /  𝑦 )  ∈  𝐴  ↔  ( 1  /  ( 1  /  𝑤 ) )  ∈  𝐴 ) ) | 
						
							| 107 | 105 106 | bibi12d | ⊢ ( 𝑦  =  ( 1  /  𝑤 )  →  ( ( 𝑦  ∈  𝐵  ↔  ( 1  /  𝑦 )  ∈  𝐴 )  ↔  ( ( 1  /  𝑤 )  ∈  𝐵  ↔  ( 1  /  ( 1  /  𝑤 ) )  ∈  𝐴 ) ) ) | 
						
							| 108 | 6 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ℝ+ ( 𝑦  ∈  𝐵  ↔  ( 1  /  𝑦 )  ∈  𝐴 ) ) | 
						
							| 109 | 108 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℝ+ )  →  ∀ 𝑦  ∈  ℝ+ ( 𝑦  ∈  𝐵  ↔  ( 1  /  𝑦 )  ∈  𝐴 ) ) | 
						
							| 110 |  | rpreccl | ⊢ ( 𝑤  ∈  ℝ+  →  ( 1  /  𝑤 )  ∈  ℝ+ ) | 
						
							| 111 | 110 | adantl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℝ+ )  →  ( 1  /  𝑤 )  ∈  ℝ+ ) | 
						
							| 112 | 107 109 111 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℝ+ )  →  ( ( 1  /  𝑤 )  ∈  𝐵  ↔  ( 1  /  ( 1  /  𝑤 ) )  ∈  𝐴 ) ) | 
						
							| 113 | 94 | adantl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℝ+ )  →  ( 1  /  ( 1  /  𝑤 ) )  =  𝑤 ) | 
						
							| 114 | 113 | eleq1d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℝ+ )  →  ( ( 1  /  ( 1  /  𝑤 ) )  ∈  𝐴  ↔  𝑤  ∈  𝐴 ) ) | 
						
							| 115 | 112 114 | bitr2d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℝ+ )  →  ( 𝑤  ∈  𝐴  ↔  ( 1  /  𝑤 )  ∈  𝐵 ) ) | 
						
							| 116 | 104 91 115 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  ¬  𝑤  =  0 )  →  ( 𝑤  ∈  𝐴  ↔  ( 1  /  𝑤 )  ∈  𝐵 ) ) | 
						
							| 117 | 103 116 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  ¬  𝑤  =  0 )  →  ( 1  /  𝑤 )  ∈  𝐵 ) | 
						
							| 118 | 91 | rpreccld | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  ¬  𝑤  =  0 )  →  ( 1  /  𝑤 )  ∈  ℝ+ ) | 
						
							| 119 | 117 118 | elind | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  ¬  𝑤  =  0 )  →  ( 1  /  𝑤 )  ∈  ( 𝐵  ∩  ℝ+ ) ) | 
						
							| 120 | 99 102 119 | rspcdva | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  ¬  𝑤  =  0 )  →  ⦋ ( 1  /  ( 1  /  𝑤 ) )  /  𝑥 ⦌ 𝑅  ∈  ℂ ) | 
						
							| 121 | 96 120 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  ∧  ¬  𝑤  =  0 )  →  ⦋ 𝑤  /  𝑥 ⦌ 𝑅  ∈  ℂ ) | 
						
							| 122 | 73 121 | ifclda | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝐴 )  →  if ( 𝑤  =  0 ,  𝐶 ,  ⦋ 𝑤  /  𝑥 ⦌ 𝑅 )  ∈  ℂ ) | 
						
							| 123 | 111 | biantrud | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℝ+ )  →  ( ( 1  /  𝑤 )  ∈  𝐵  ↔  ( ( 1  /  𝑤 )  ∈  𝐵  ∧  ( 1  /  𝑤 )  ∈  ℝ+ ) ) ) | 
						
							| 124 | 115 123 | bitrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℝ+ )  →  ( 𝑤  ∈  𝐴  ↔  ( ( 1  /  𝑤 )  ∈  𝐵  ∧  ( 1  /  𝑤 )  ∈  ℝ+ ) ) ) | 
						
							| 125 |  | elin | ⊢ ( ( 1  /  𝑤 )  ∈  ( 𝐵  ∩  ℝ+ )  ↔  ( ( 1  /  𝑤 )  ∈  𝐵  ∧  ( 1  /  𝑤 )  ∈  ℝ+ ) ) | 
						
							| 126 | 124 125 | bitr4di | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℝ+ )  →  ( 𝑤  ∈  𝐴  ↔  ( 1  /  𝑤 )  ∈  ( 𝐵  ∩  ℝ+ ) ) ) | 
						
							| 127 |  | iftrue | ⊢ ( 𝑤  =  0  →  if ( 𝑤  =  0 ,  𝐶 ,  ⦋ 𝑤  /  𝑥 ⦌ 𝑅 )  =  𝐶 ) | 
						
							| 128 |  | eqeq1 | ⊢ ( 𝑤  =  ( 1  /  𝑦 )  →  ( 𝑤  =  0  ↔  ( 1  /  𝑦 )  =  0 ) ) | 
						
							| 129 |  | csbeq1 | ⊢ ( 𝑤  =  ( 1  /  𝑦 )  →  ⦋ 𝑤  /  𝑥 ⦌ 𝑅  =  ⦋ ( 1  /  𝑦 )  /  𝑥 ⦌ 𝑅 ) | 
						
							| 130 | 128 129 | ifbieq2d | ⊢ ( 𝑤  =  ( 1  /  𝑦 )  →  if ( 𝑤  =  0 ,  𝐶 ,  ⦋ 𝑤  /  𝑥 ⦌ 𝑅 )  =  if ( ( 1  /  𝑦 )  =  0 ,  𝐶 ,  ⦋ ( 1  /  𝑦 )  /  𝑥 ⦌ 𝑅 ) ) | 
						
							| 131 | 1 2 55 122 126 127 130 8 9 | rlimcnp | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  if ( ( 1  /  𝑦 )  =  0 ,  𝐶 ,  ⦋ ( 1  /  𝑦 )  /  𝑥 ⦌ 𝑅 ) )  ⇝𝑟  𝐶  ↔  ( 𝑤  ∈  𝐴  ↦  if ( 𝑤  =  0 ,  𝐶 ,  ⦋ 𝑤  /  𝑥 ⦌ 𝑅 ) )  ∈  ( ( 𝐾  CnP  𝐽 ) ‘ 0 ) ) ) | 
						
							| 132 |  | nfcv | ⊢ Ⅎ 𝑤 if ( 𝑥  =  0 ,  𝐶 ,  𝑅 ) | 
						
							| 133 |  | nfv | ⊢ Ⅎ 𝑥 𝑤  =  0 | 
						
							| 134 |  | nfcv | ⊢ Ⅎ 𝑥 𝐶 | 
						
							| 135 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑤  /  𝑥 ⦌ 𝑅 | 
						
							| 136 | 133 134 135 | nfif | ⊢ Ⅎ 𝑥 if ( 𝑤  =  0 ,  𝐶 ,  ⦋ 𝑤  /  𝑥 ⦌ 𝑅 ) | 
						
							| 137 |  | eqeq1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥  =  0  ↔  𝑤  =  0 ) ) | 
						
							| 138 |  | csbeq1a | ⊢ ( 𝑥  =  𝑤  →  𝑅  =  ⦋ 𝑤  /  𝑥 ⦌ 𝑅 ) | 
						
							| 139 | 137 138 | ifbieq2d | ⊢ ( 𝑥  =  𝑤  →  if ( 𝑥  =  0 ,  𝐶 ,  𝑅 )  =  if ( 𝑤  =  0 ,  𝐶 ,  ⦋ 𝑤  /  𝑥 ⦌ 𝑅 ) ) | 
						
							| 140 | 132 136 139 | cbvmpt | ⊢ ( 𝑥  ∈  𝐴  ↦  if ( 𝑥  =  0 ,  𝐶 ,  𝑅 ) )  =  ( 𝑤  ∈  𝐴  ↦  if ( 𝑤  =  0 ,  𝐶 ,  ⦋ 𝑤  /  𝑥 ⦌ 𝑅 ) ) | 
						
							| 141 | 140 | eleq1i | ⊢ ( ( 𝑥  ∈  𝐴  ↦  if ( 𝑥  =  0 ,  𝐶 ,  𝑅 ) )  ∈  ( ( 𝐾  CnP  𝐽 ) ‘ 0 )  ↔  ( 𝑤  ∈  𝐴  ↦  if ( 𝑤  =  0 ,  𝐶 ,  ⦋ 𝑤  /  𝑥 ⦌ 𝑅 ) )  ∈  ( ( 𝐾  CnP  𝐽 ) ‘ 0 ) ) | 
						
							| 142 | 131 141 | bitr4di | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  ( 𝐵  ∩  ℝ+ )  ↦  if ( ( 1  /  𝑦 )  =  0 ,  𝐶 ,  ⦋ ( 1  /  𝑦 )  /  𝑥 ⦌ 𝑅 ) )  ⇝𝑟  𝐶  ↔  ( 𝑥  ∈  𝐴  ↦  if ( 𝑥  =  0 ,  𝐶 ,  𝑅 ) )  ∈  ( ( 𝐾  CnP  𝐽 ) ‘ 0 ) ) ) | 
						
							| 143 | 53 72 142 | 3bitr2d | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐵  ↦  𝑆 )  ⇝𝑟  𝐶  ↔  ( 𝑥  ∈  𝐴  ↦  if ( 𝑥  =  0 ,  𝐶 ,  𝑅 ) )  ∈  ( ( 𝐾  CnP  𝐽 ) ‘ 0 ) ) ) |