Metamath Proof Explorer


Theorem xrlimcnp

Description: Relate a limit of a real-valued sequence at infinity to the continuity of the corresponding extended real function at +oo . Since any ~>r limit can be written in the form on the left side of the implication, this shows that real limits are a special case of topological continuity at a point. (Contributed by Mario Carneiro, 8-Sep-2015)

Ref Expression
Hypotheses xrlimcnp.a ( 𝜑𝐴 = ( 𝐵 ∪ { +∞ } ) )
xrlimcnp.b ( 𝜑𝐵 ⊆ ℝ )
xrlimcnp.r ( ( 𝜑𝑥𝐴 ) → 𝑅 ∈ ℂ )
xrlimcnp.c ( 𝑥 = +∞ → 𝑅 = 𝐶 )
xrlimcnp.j 𝐽 = ( TopOpen ‘ ℂfld )
xrlimcnp.k 𝐾 = ( ( ordTop ‘ ≤ ) ↾t 𝐴 )
Assertion xrlimcnp ( 𝜑 → ( ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 ↔ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) )

Proof

Step Hyp Ref Expression
1 xrlimcnp.a ( 𝜑𝐴 = ( 𝐵 ∪ { +∞ } ) )
2 xrlimcnp.b ( 𝜑𝐵 ⊆ ℝ )
3 xrlimcnp.r ( ( 𝜑𝑥𝐴 ) → 𝑅 ∈ ℂ )
4 xrlimcnp.c ( 𝑥 = +∞ → 𝑅 = 𝐶 )
5 xrlimcnp.j 𝐽 = ( TopOpen ‘ ℂfld )
6 xrlimcnp.k 𝐾 = ( ( ordTop ‘ ≤ ) ↾t 𝐴 )
7 3 fmpttd ( 𝜑 → ( 𝑥𝐴𝑅 ) : 𝐴 ⟶ ℂ )
8 7 adantr ( ( 𝜑 ∧ ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 ) → ( 𝑥𝐴𝑅 ) : 𝐴 ⟶ ℂ )
9 eqid ( 𝑥𝐴𝑅 ) = ( 𝑥𝐴𝑅 )
10 ssun2 { +∞ } ⊆ ( 𝐵 ∪ { +∞ } )
11 pnfex +∞ ∈ V
12 11 snid +∞ ∈ { +∞ }
13 10 12 sselii +∞ ∈ ( 𝐵 ∪ { +∞ } )
14 13 1 eleqtrrid ( 𝜑 → +∞ ∈ 𝐴 )
15 4 eleq1d ( 𝑥 = +∞ → ( 𝑅 ∈ ℂ ↔ 𝐶 ∈ ℂ ) )
16 3 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝑅 ∈ ℂ )
17 15 16 14 rspcdva ( 𝜑𝐶 ∈ ℂ )
18 9 4 14 17 fvmptd3 ( 𝜑 → ( ( 𝑥𝐴𝑅 ) ‘ +∞ ) = 𝐶 )
19 18 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 ) ∧ 𝑦𝐽 ) → ( ( 𝑥𝐴𝑅 ) ‘ +∞ ) = 𝐶 )
20 19 eleq1d ( ( ( 𝜑 ∧ ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 ) ∧ 𝑦𝐽 ) → ( ( ( 𝑥𝐴𝑅 ) ‘ +∞ ) ∈ 𝑦𝐶𝑦 ) )
21 cnxmet ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ )
22 5 cnfldtopn 𝐽 = ( MetOpen ‘ ( abs ∘ − ) )
23 22 mopni2 ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝑦𝐽𝐶𝑦 ) → ∃ 𝑟 ∈ ℝ+ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 )
24 21 23 mp3an1 ( ( 𝑦𝐽𝐶𝑦 ) → ∃ 𝑟 ∈ ℝ+ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 )
25 ssun1 𝐵 ⊆ ( 𝐵 ∪ { +∞ } )
26 25 1 sseqtrrid ( 𝜑𝐵𝐴 )
27 ssralv ( 𝐵𝐴 → ( ∀ 𝑥𝐴 𝑅 ∈ ℂ → ∀ 𝑥𝐵 𝑅 ∈ ℂ ) )
28 26 16 27 sylc ( 𝜑 → ∀ 𝑥𝐵 𝑅 ∈ ℂ )
29 28 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) → ∀ 𝑥𝐵 𝑅 ∈ ℂ )
30 simprl ( ( ( 𝜑 ∧ ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) → 𝑟 ∈ ℝ+ )
31 simplr ( ( ( 𝜑 ∧ ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) → ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 )
32 29 30 31 rlimi ( ( ( 𝜑 ∧ ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) )
33 letop ( ordTop ‘ ≤ ) ∈ Top
34 ressxr ℝ ⊆ ℝ*
35 2 34 sstrdi ( 𝜑𝐵 ⊆ ℝ* )
36 pnfxr +∞ ∈ ℝ*
37 36 a1i ( 𝜑 → +∞ ∈ ℝ* )
38 37 snssd ( 𝜑 → { +∞ } ⊆ ℝ* )
39 35 38 unssd ( 𝜑 → ( 𝐵 ∪ { +∞ } ) ⊆ ℝ* )
40 1 39 eqsstrd ( 𝜑𝐴 ⊆ ℝ* )
41 xrex * ∈ V
42 41 ssex ( 𝐴 ⊆ ℝ*𝐴 ∈ V )
43 40 42 syl ( 𝜑𝐴 ∈ V )
44 43 ad2antrr ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → 𝐴 ∈ V )
45 iocpnfordt ( 𝑘 (,] +∞ ) ∈ ( ordTop ‘ ≤ )
46 45 a1i ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → ( 𝑘 (,] +∞ ) ∈ ( ordTop ‘ ≤ ) )
47 elrestr ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ 𝐴 ∈ V ∧ ( 𝑘 (,] +∞ ) ∈ ( ordTop ‘ ≤ ) ) → ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) ∈ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) )
48 33 44 46 47 mp3an2i ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) ∈ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) )
49 48 6 eleqtrrdi ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) ∈ 𝐾 )
50 simprl ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → 𝑘 ∈ ℝ )
51 50 rexrd ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → 𝑘 ∈ ℝ* )
52 36 a1i ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → +∞ ∈ ℝ* )
53 50 ltpnfd ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → 𝑘 < +∞ )
54 ubioc1 ( ( 𝑘 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑘 < +∞ ) → +∞ ∈ ( 𝑘 (,] +∞ ) )
55 51 52 53 54 syl3anc ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → +∞ ∈ ( 𝑘 (,] +∞ ) )
56 14 ad2antrr ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → +∞ ∈ 𝐴 )
57 55 56 elind ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → +∞ ∈ ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) )
58 simplr ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑥𝐵 ) → 𝑘 ∈ ℝ )
59 58 rexrd ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑥𝐵 ) → 𝑘 ∈ ℝ* )
60 elioc1 ( ( 𝑘 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑥 ∈ ( 𝑘 (,] +∞ ) ↔ ( 𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞ ) ) )
61 59 36 60 sylancl ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑥𝐵 ) → ( 𝑥 ∈ ( 𝑘 (,] +∞ ) ↔ ( 𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞ ) ) )
62 simp2 ( ( 𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞ ) → 𝑘 < 𝑥 )
63 61 62 biimtrdi ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑥𝐵 ) → ( 𝑥 ∈ ( 𝑘 (,] +∞ ) → 𝑘 < 𝑥 ) )
64 2 ad2antrr ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ 𝑘 ∈ ℝ ) → 𝐵 ⊆ ℝ )
65 64 sselda ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑥𝐵 ) → 𝑥 ∈ ℝ )
66 ltle ( ( 𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑘 < 𝑥𝑘𝑥 ) )
67 58 65 66 syl2anc ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑥𝐵 ) → ( 𝑘 < 𝑥𝑘𝑥 ) )
68 63 67 syld ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑥𝐵 ) → ( 𝑥 ∈ ( 𝑘 (,] +∞ ) → 𝑘𝑥 ) )
69 21 a1i ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑥𝐵 ) → ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) )
70 simprl ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) → 𝑟 ∈ ℝ+ )
71 70 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑥𝐵 ) → 𝑟 ∈ ℝ+ )
72 rpxr ( 𝑟 ∈ ℝ+𝑟 ∈ ℝ* )
73 71 72 syl ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑥𝐵 ) → 𝑟 ∈ ℝ* )
74 17 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑥𝐵 ) → 𝐶 ∈ ℂ )
75 28 ad2antrr ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ 𝑘 ∈ ℝ ) → ∀ 𝑥𝐵 𝑅 ∈ ℂ )
76 75 r19.21bi ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑥𝐵 ) → 𝑅 ∈ ℂ )
77 elbl3 ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝑟 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℂ ∧ 𝑅 ∈ ℂ ) ) → ( 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ↔ ( 𝑅 ( abs ∘ − ) 𝐶 ) < 𝑟 ) )
78 69 73 74 76 77 syl22anc ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑥𝐵 ) → ( 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ↔ ( 𝑅 ( abs ∘ − ) 𝐶 ) < 𝑟 ) )
79 eqid ( abs ∘ − ) = ( abs ∘ − )
80 79 cnmetdval ( ( 𝑅 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝑅 ( abs ∘ − ) 𝐶 ) = ( abs ‘ ( 𝑅𝐶 ) ) )
81 76 74 80 syl2anc ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑥𝐵 ) → ( 𝑅 ( abs ∘ − ) 𝐶 ) = ( abs ‘ ( 𝑅𝐶 ) ) )
82 81 breq1d ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑥𝐵 ) → ( ( 𝑅 ( abs ∘ − ) 𝐶 ) < 𝑟 ↔ ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) )
83 78 82 bitrd ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑥𝐵 ) → ( 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ↔ ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) )
84 83 biimprd ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑥𝐵 ) → ( ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) )
85 68 84 imim12d ( ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑥𝐵 ) → ( ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) → ( 𝑥 ∈ ( 𝑘 (,] +∞ ) → 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) ) )
86 85 ralimdva ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ 𝑘 ∈ ℝ ) → ( ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) → ∀ 𝑥𝐵 ( 𝑥 ∈ ( 𝑘 (,] +∞ ) → 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) ) )
87 86 impr ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → ∀ 𝑥𝐵 ( 𝑥 ∈ ( 𝑘 (,] +∞ ) → 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) )
88 17 ad2antrr ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → 𝐶 ∈ ℂ )
89 simplrl ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → 𝑟 ∈ ℝ+ )
90 blcntr ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝐶 ∈ ℂ ∧ 𝑟 ∈ ℝ+ ) → 𝐶 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) )
91 21 88 89 90 mp3an2i ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → 𝐶 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) )
92 91 a1d ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → ( +∞ ∈ ( 𝑘 (,] +∞ ) → 𝐶 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) )
93 eleq1 ( 𝑥 = +∞ → ( 𝑥 ∈ ( 𝑘 (,] +∞ ) ↔ +∞ ∈ ( 𝑘 (,] +∞ ) ) )
94 4 eleq1d ( 𝑥 = +∞ → ( 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ↔ 𝐶 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) )
95 93 94 imbi12d ( 𝑥 = +∞ → ( ( 𝑥 ∈ ( 𝑘 (,] +∞ ) → 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) ↔ ( +∞ ∈ ( 𝑘 (,] +∞ ) → 𝐶 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) ) )
96 11 95 ralsn ( ∀ 𝑥 ∈ { +∞ } ( 𝑥 ∈ ( 𝑘 (,] +∞ ) → 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) ↔ ( +∞ ∈ ( 𝑘 (,] +∞ ) → 𝐶 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) )
97 92 96 sylibr ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → ∀ 𝑥 ∈ { +∞ } ( 𝑥 ∈ ( 𝑘 (,] +∞ ) → 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) )
98 ralunb ( ∀ 𝑥 ∈ ( 𝐵 ∪ { +∞ } ) ( 𝑥 ∈ ( 𝑘 (,] +∞ ) → 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) ↔ ( ∀ 𝑥𝐵 ( 𝑥 ∈ ( 𝑘 (,] +∞ ) → 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) ∧ ∀ 𝑥 ∈ { +∞ } ( 𝑥 ∈ ( 𝑘 (,] +∞ ) → 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) ) )
99 87 97 98 sylanbrc ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → ∀ 𝑥 ∈ ( 𝐵 ∪ { +∞ } ) ( 𝑥 ∈ ( 𝑘 (,] +∞ ) → 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) )
100 1 ad2antrr ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → 𝐴 = ( 𝐵 ∪ { +∞ } ) )
101 99 100 raleqtrrdv ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → ∀ 𝑥𝐴 ( 𝑥 ∈ ( 𝑘 (,] +∞ ) → 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) )
102 ss2rab ( { 𝑥𝐴𝑥 ∈ ( 𝑘 (,] +∞ ) } ⊆ { 𝑥𝐴𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) } ↔ ∀ 𝑥𝐴 ( 𝑥 ∈ ( 𝑘 (,] +∞ ) → 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) )
103 101 102 sylibr ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → { 𝑥𝐴𝑥 ∈ ( 𝑘 (,] +∞ ) } ⊆ { 𝑥𝐴𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) } )
104 incom ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) = ( 𝐴 ∩ ( 𝑘 (,] +∞ ) )
105 dfin5 ( 𝐴 ∩ ( 𝑘 (,] +∞ ) ) = { 𝑥𝐴𝑥 ∈ ( 𝑘 (,] +∞ ) }
106 104 105 eqtri ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) = { 𝑥𝐴𝑥 ∈ ( 𝑘 (,] +∞ ) }
107 9 mptpreima ( ( 𝑥𝐴𝑅 ) “ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) = { 𝑥𝐴𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) }
108 103 106 107 3sstr4g ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) ⊆ ( ( 𝑥𝐴𝑅 ) “ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) )
109 funmpt Fun ( 𝑥𝐴𝑅 )
110 inss2 ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) ⊆ 𝐴
111 7 ad2antrr ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → ( 𝑥𝐴𝑅 ) : 𝐴 ⟶ ℂ )
112 111 fdmd ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → dom ( 𝑥𝐴𝑅 ) = 𝐴 )
113 110 112 sseqtrrid ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) ⊆ dom ( 𝑥𝐴𝑅 ) )
114 funimass3 ( ( Fun ( 𝑥𝐴𝑅 ) ∧ ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) ⊆ dom ( 𝑥𝐴𝑅 ) ) → ( ( ( 𝑥𝐴𝑅 ) “ ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ↔ ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) ⊆ ( ( 𝑥𝐴𝑅 ) “ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) ) )
115 109 113 114 sylancr ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → ( ( ( 𝑥𝐴𝑅 ) “ ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ↔ ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) ⊆ ( ( 𝑥𝐴𝑅 ) “ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) ) )
116 108 115 mpbird ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → ( ( 𝑥𝐴𝑅 ) “ ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) )
117 simplrr ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 )
118 116 117 sstrd ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → ( ( 𝑥𝐴𝑅 ) “ ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) ) ⊆ 𝑦 )
119 eleq2 ( 𝑧 = ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) → ( +∞ ∈ 𝑧 ↔ +∞ ∈ ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) ) )
120 imaeq2 ( 𝑧 = ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) → ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) = ( ( 𝑥𝐴𝑅 ) “ ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) ) )
121 120 sseq1d ( 𝑧 = ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) → ( ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) ⊆ 𝑦 ↔ ( ( 𝑥𝐴𝑅 ) “ ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) ) ⊆ 𝑦 ) )
122 119 121 anbi12d ( 𝑧 = ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) → ( ( +∞ ∈ 𝑧 ∧ ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) ⊆ 𝑦 ) ↔ ( +∞ ∈ ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) ∧ ( ( 𝑥𝐴𝑅 ) “ ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) ) ⊆ 𝑦 ) ) )
123 122 rspcev ( ( ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) ∈ 𝐾 ∧ ( +∞ ∈ ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) ∧ ( ( 𝑥𝐴𝑅 ) “ ( ( 𝑘 (,] +∞ ) ∩ 𝐴 ) ) ⊆ 𝑦 ) ) → ∃ 𝑧𝐾 ( +∞ ∈ 𝑧 ∧ ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) ⊆ 𝑦 ) )
124 49 57 118 123 syl12anc ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) → ∃ 𝑧𝐾 ( +∞ ∈ 𝑧 ∧ ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) ⊆ 𝑦 ) )
125 124 rexlimdvaa ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) → ( ∃ 𝑘 ∈ ℝ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) → ∃ 𝑧𝐾 ( +∞ ∈ 𝑧 ∧ ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) ⊆ 𝑦 ) ) )
126 125 adantlr ( ( ( 𝜑 ∧ ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) → ( ∃ 𝑘 ∈ ℝ ∀ 𝑥𝐵 ( 𝑘𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) → ∃ 𝑧𝐾 ( +∞ ∈ 𝑧 ∧ ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) ⊆ 𝑦 ) ) )
127 32 126 mpd ( ( ( 𝜑 ∧ ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 ) ) → ∃ 𝑧𝐾 ( +∞ ∈ 𝑧 ∧ ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) ⊆ 𝑦 ) )
128 127 rexlimdvaa ( ( 𝜑 ∧ ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑦 → ∃ 𝑧𝐾 ( +∞ ∈ 𝑧 ∧ ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) ⊆ 𝑦 ) ) )
129 24 128 syl5 ( ( 𝜑 ∧ ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 ) → ( ( 𝑦𝐽𝐶𝑦 ) → ∃ 𝑧𝐾 ( +∞ ∈ 𝑧 ∧ ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) ⊆ 𝑦 ) ) )
130 129 expdimp ( ( ( 𝜑 ∧ ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 ) ∧ 𝑦𝐽 ) → ( 𝐶𝑦 → ∃ 𝑧𝐾 ( +∞ ∈ 𝑧 ∧ ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) ⊆ 𝑦 ) ) )
131 20 130 sylbid ( ( ( 𝜑 ∧ ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 ) ∧ 𝑦𝐽 ) → ( ( ( 𝑥𝐴𝑅 ) ‘ +∞ ) ∈ 𝑦 → ∃ 𝑧𝐾 ( +∞ ∈ 𝑧 ∧ ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) ⊆ 𝑦 ) ) )
132 131 ralrimiva ( ( 𝜑 ∧ ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 ) → ∀ 𝑦𝐽 ( ( ( 𝑥𝐴𝑅 ) ‘ +∞ ) ∈ 𝑦 → ∃ 𝑧𝐾 ( +∞ ∈ 𝑧 ∧ ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) ⊆ 𝑦 ) ) )
133 letopon ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* )
134 resttopon ( ( ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) ∧ 𝐴 ⊆ ℝ* ) → ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) )
135 133 40 134 sylancr ( 𝜑 → ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) )
136 6 135 eqeltrid ( 𝜑𝐾 ∈ ( TopOn ‘ 𝐴 ) )
137 5 cnfldtopon 𝐽 ∈ ( TopOn ‘ ℂ )
138 137 a1i ( 𝜑𝐽 ∈ ( TopOn ‘ ℂ ) )
139 iscnp ( ( 𝐾 ∈ ( TopOn ‘ 𝐴 ) ∧ 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ +∞ ∈ 𝐴 ) → ( ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ↔ ( ( 𝑥𝐴𝑅 ) : 𝐴 ⟶ ℂ ∧ ∀ 𝑦𝐽 ( ( ( 𝑥𝐴𝑅 ) ‘ +∞ ) ∈ 𝑦 → ∃ 𝑧𝐾 ( +∞ ∈ 𝑧 ∧ ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) ⊆ 𝑦 ) ) ) ) )
140 136 138 14 139 syl3anc ( 𝜑 → ( ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ↔ ( ( 𝑥𝐴𝑅 ) : 𝐴 ⟶ ℂ ∧ ∀ 𝑦𝐽 ( ( ( 𝑥𝐴𝑅 ) ‘ +∞ ) ∈ 𝑦 → ∃ 𝑧𝐾 ( +∞ ∈ 𝑧 ∧ ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) ⊆ 𝑦 ) ) ) ) )
141 140 adantr ( ( 𝜑 ∧ ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 ) → ( ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ↔ ( ( 𝑥𝐴𝑅 ) : 𝐴 ⟶ ℂ ∧ ∀ 𝑦𝐽 ( ( ( 𝑥𝐴𝑅 ) ‘ +∞ ) ∈ 𝑦 → ∃ 𝑧𝐾 ( +∞ ∈ 𝑧 ∧ ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) ⊆ 𝑦 ) ) ) ) )
142 8 132 141 mpbir2and ( ( 𝜑 ∧ ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 ) → ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) )
143 simplr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) )
144 17 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝐶 ∈ ℂ )
145 72 adantl ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ* )
146 22 blopn ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝐶 ∈ ℂ ∧ 𝑟 ∈ ℝ* ) → ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∈ 𝐽 )
147 21 144 145 146 mp3an2i ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∈ 𝐽 )
148 18 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑥𝐴𝑅 ) ‘ +∞ ) = 𝐶 )
149 simpr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ+ )
150 21 144 149 90 mp3an2i ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝐶 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) )
151 148 150 eqeltrd ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑥𝐴𝑅 ) ‘ +∞ ) ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) )
152 cnpimaex ( ( ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ∧ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∈ 𝐽 ∧ ( ( 𝑥𝐴𝑅 ) ‘ +∞ ) ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) → ∃ 𝑧𝐾 ( +∞ ∈ 𝑧 ∧ ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) )
153 143 147 151 152 syl3anc ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑧𝐾 ( +∞ ∈ 𝑧 ∧ ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) )
154 vex 𝑤 ∈ V
155 154 inex1 ( 𝑤𝐴 ) ∈ V
156 155 a1i ( ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑤 ∈ ( ordTop ‘ ≤ ) ) → ( 𝑤𝐴 ) ∈ V )
157 6 eleq2i ( 𝑧𝐾𝑧 ∈ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) )
158 43 ad2antrr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝐴 ∈ V )
159 elrest ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ 𝐴 ∈ V ) → ( 𝑧 ∈ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ↔ ∃ 𝑤 ∈ ( ordTop ‘ ≤ ) 𝑧 = ( 𝑤𝐴 ) ) )
160 33 158 159 sylancr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑧 ∈ ( ( ordTop ‘ ≤ ) ↾t 𝐴 ) ↔ ∃ 𝑤 ∈ ( ordTop ‘ ≤ ) 𝑧 = ( 𝑤𝐴 ) ) )
161 157 160 bitrid ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑧𝐾 ↔ ∃ 𝑤 ∈ ( ordTop ‘ ≤ ) 𝑧 = ( 𝑤𝐴 ) ) )
162 eleq2 ( 𝑧 = ( 𝑤𝐴 ) → ( +∞ ∈ 𝑧 ↔ +∞ ∈ ( 𝑤𝐴 ) ) )
163 imaeq2 ( 𝑧 = ( 𝑤𝐴 ) → ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) = ( ( 𝑥𝐴𝑅 ) “ ( 𝑤𝐴 ) ) )
164 163 sseq1d ( 𝑧 = ( 𝑤𝐴 ) → ( ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ↔ ( ( 𝑥𝐴𝑅 ) “ ( 𝑤𝐴 ) ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) )
165 162 164 anbi12d ( 𝑧 = ( 𝑤𝐴 ) → ( ( +∞ ∈ 𝑧 ∧ ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) ↔ ( +∞ ∈ ( 𝑤𝐴 ) ∧ ( ( 𝑥𝐴𝑅 ) “ ( 𝑤𝐴 ) ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) ) )
166 165 adantl ( ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑧 = ( 𝑤𝐴 ) ) → ( ( +∞ ∈ 𝑧 ∧ ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) ↔ ( +∞ ∈ ( 𝑤𝐴 ) ∧ ( ( 𝑥𝐴𝑅 ) “ ( 𝑤𝐴 ) ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) ) )
167 156 161 166 rexxfr2d ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑧𝐾 ( +∞ ∈ 𝑧 ∧ ( ( 𝑥𝐴𝑅 ) “ 𝑧 ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) ↔ ∃ 𝑤 ∈ ( ordTop ‘ ≤ ) ( +∞ ∈ ( 𝑤𝐴 ) ∧ ( ( 𝑥𝐴𝑅 ) “ ( 𝑤𝐴 ) ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) ) )
168 153 167 mpbid ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑤 ∈ ( ordTop ‘ ≤ ) ( +∞ ∈ ( 𝑤𝐴 ) ∧ ( ( 𝑥𝐴𝑅 ) “ ( 𝑤𝐴 ) ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) )
169 elinel1 ( +∞ ∈ ( 𝑤𝐴 ) → +∞ ∈ 𝑤 )
170 pnfnei ( ( 𝑤 ∈ ( ordTop ‘ ≤ ) ∧ +∞ ∈ 𝑤 ) → ∃ 𝑘 ∈ ℝ ( 𝑘 (,] +∞ ) ⊆ 𝑤 )
171 169 170 sylan2 ( ( 𝑤 ∈ ( ordTop ‘ ≤ ) ∧ +∞ ∈ ( 𝑤𝐴 ) ) → ∃ 𝑘 ∈ ℝ ( 𝑘 (,] +∞ ) ⊆ 𝑤 )
172 df-ima ( ( 𝑥𝐴𝑅 ) “ ( 𝑤𝐴 ) ) = ran ( ( 𝑥𝐴𝑅 ) ↾ ( 𝑤𝐴 ) )
173 inss2 ( 𝑤𝐴 ) ⊆ 𝐴
174 resmpt ( ( 𝑤𝐴 ) ⊆ 𝐴 → ( ( 𝑥𝐴𝑅 ) ↾ ( 𝑤𝐴 ) ) = ( 𝑥 ∈ ( 𝑤𝐴 ) ↦ 𝑅 ) )
175 173 174 ax-mp ( ( 𝑥𝐴𝑅 ) ↾ ( 𝑤𝐴 ) ) = ( 𝑥 ∈ ( 𝑤𝐴 ) ↦ 𝑅 )
176 175 rneqi ran ( ( 𝑥𝐴𝑅 ) ↾ ( 𝑤𝐴 ) ) = ran ( 𝑥 ∈ ( 𝑤𝐴 ) ↦ 𝑅 )
177 172 176 eqtri ( ( 𝑥𝐴𝑅 ) “ ( 𝑤𝐴 ) ) = ran ( 𝑥 ∈ ( 𝑤𝐴 ) ↦ 𝑅 )
178 177 sseq1i ( ( ( 𝑥𝐴𝑅 ) “ ( 𝑤𝐴 ) ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ↔ ran ( 𝑥 ∈ ( 𝑤𝐴 ) ↦ 𝑅 ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) )
179 dfss3 ( ran ( 𝑥 ∈ ( 𝑤𝐴 ) ↦ 𝑅 ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ↔ ∀ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝑤𝐴 ) ↦ 𝑅 ) 𝑧 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) )
180 178 179 bitri ( ( ( 𝑥𝐴𝑅 ) “ ( 𝑤𝐴 ) ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ↔ ∀ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝑤𝐴 ) ↦ 𝑅 ) 𝑧 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) )
181 16 adantr ( ( 𝜑𝑟 ∈ ℝ+ ) → ∀ 𝑥𝐴 𝑅 ∈ ℂ )
182 ssralv ( ( 𝑤𝐴 ) ⊆ 𝐴 → ( ∀ 𝑥𝐴 𝑅 ∈ ℂ → ∀ 𝑥 ∈ ( 𝑤𝐴 ) 𝑅 ∈ ℂ ) )
183 173 181 182 mpsyl ( ( 𝜑𝑟 ∈ ℝ+ ) → ∀ 𝑥 ∈ ( 𝑤𝐴 ) 𝑅 ∈ ℂ )
184 eqid ( 𝑥 ∈ ( 𝑤𝐴 ) ↦ 𝑅 ) = ( 𝑥 ∈ ( 𝑤𝐴 ) ↦ 𝑅 )
185 eleq1 ( 𝑧 = 𝑅 → ( 𝑧 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ↔ 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) )
186 184 185 ralrnmptw ( ∀ 𝑥 ∈ ( 𝑤𝐴 ) 𝑅 ∈ ℂ → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝑤𝐴 ) ↦ 𝑅 ) 𝑧 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ↔ ∀ 𝑥 ∈ ( 𝑤𝐴 ) 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) )
187 183 186 syl ( ( 𝜑𝑟 ∈ ℝ+ ) → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝑤𝐴 ) ↦ 𝑅 ) 𝑧 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ↔ ∀ 𝑥 ∈ ( 𝑤𝐴 ) 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) )
188 187 biimpd ( ( 𝜑𝑟 ∈ ℝ+ ) → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝑤𝐴 ) ↦ 𝑅 ) 𝑧 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) → ∀ 𝑥 ∈ ( 𝑤𝐴 ) 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) )
189 180 188 biimtrid ( ( 𝜑𝑟 ∈ ℝ+ ) → ( ( ( 𝑥𝐴𝑅 ) “ ( 𝑤𝐴 ) ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) → ∀ 𝑥 ∈ ( 𝑤𝐴 ) 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) )
190 simplrr ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ( 𝑥𝐵𝑘 < 𝑥 ) ) → ( 𝑘 (,] +∞ ) ⊆ 𝑤 )
191 35 ad3antrrr ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ( 𝑥𝐵𝑘 < 𝑥 ) ) → 𝐵 ⊆ ℝ* )
192 simprl ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ( 𝑥𝐵𝑘 < 𝑥 ) ) → 𝑥𝐵 )
193 191 192 sseldd ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ( 𝑥𝐵𝑘 < 𝑥 ) ) → 𝑥 ∈ ℝ* )
194 simprr ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ( 𝑥𝐵𝑘 < 𝑥 ) ) → 𝑘 < 𝑥 )
195 pnfge ( 𝑥 ∈ ℝ*𝑥 ≤ +∞ )
196 193 195 syl ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ( 𝑥𝐵𝑘 < 𝑥 ) ) → 𝑥 ≤ +∞ )
197 simplrl ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ( 𝑥𝐵𝑘 < 𝑥 ) ) → 𝑘 ∈ ℝ )
198 197 rexrd ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ( 𝑥𝐵𝑘 < 𝑥 ) ) → 𝑘 ∈ ℝ* )
199 198 36 60 sylancl ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ( 𝑥𝐵𝑘 < 𝑥 ) ) → ( 𝑥 ∈ ( 𝑘 (,] +∞ ) ↔ ( 𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞ ) ) )
200 193 194 196 199 mpbir3and ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ( 𝑥𝐵𝑘 < 𝑥 ) ) → 𝑥 ∈ ( 𝑘 (,] +∞ ) )
201 190 200 sseldd ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ( 𝑥𝐵𝑘 < 𝑥 ) ) → 𝑥𝑤 )
202 26 ad2antrr ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) → 𝐵𝐴 )
203 202 sselda ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ 𝑥𝐵 ) → 𝑥𝐴 )
204 203 adantrr ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ( 𝑥𝐵𝑘 < 𝑥 ) ) → 𝑥𝐴 )
205 201 204 elind ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ( 𝑥𝐵𝑘 < 𝑥 ) ) → 𝑥 ∈ ( 𝑤𝐴 ) )
206 205 ex ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) → ( ( 𝑥𝐵𝑘 < 𝑥 ) → 𝑥 ∈ ( 𝑤𝐴 ) ) )
207 206 imim1d ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) → ( ( 𝑥 ∈ ( 𝑤𝐴 ) → 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) → ( ( 𝑥𝐵𝑘 < 𝑥 ) → 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) ) )
208 21 a1i ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ( 𝑥𝐵𝑘 < 𝑥 ) ) → ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) )
209 72 adantl ( ( 𝜑𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ* )
210 209 ad2antrr ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ( 𝑥𝐵𝑘 < 𝑥 ) ) → 𝑟 ∈ ℝ* )
211 17 ad3antrrr ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ( 𝑥𝐵𝑘 < 𝑥 ) ) → 𝐶 ∈ ℂ )
212 28 ad2antrr ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) → ∀ 𝑥𝐵 𝑅 ∈ ℂ )
213 212 r19.21bi ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ 𝑥𝐵 ) → 𝑅 ∈ ℂ )
214 213 adantrr ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ( 𝑥𝐵𝑘 < 𝑥 ) ) → 𝑅 ∈ ℂ )
215 208 210 211 214 77 syl22anc ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ( 𝑥𝐵𝑘 < 𝑥 ) ) → ( 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ↔ ( 𝑅 ( abs ∘ − ) 𝐶 ) < 𝑟 ) )
216 214 211 80 syl2anc ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ( 𝑥𝐵𝑘 < 𝑥 ) ) → ( 𝑅 ( abs ∘ − ) 𝐶 ) = ( abs ‘ ( 𝑅𝐶 ) ) )
217 216 breq1d ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ( 𝑥𝐵𝑘 < 𝑥 ) ) → ( ( 𝑅 ( abs ∘ − ) 𝐶 ) < 𝑟 ↔ ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) )
218 215 217 bitrd ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ( 𝑥𝐵𝑘 < 𝑥 ) ) → ( 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ↔ ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) )
219 218 pm5.74da ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) → ( ( ( 𝑥𝐵𝑘 < 𝑥 ) → 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) ↔ ( ( 𝑥𝐵𝑘 < 𝑥 ) → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) )
220 207 219 sylibd ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) → ( ( 𝑥 ∈ ( 𝑤𝐴 ) → 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) → ( ( 𝑥𝐵𝑘 < 𝑥 ) → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) )
221 220 exp4a ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) → ( ( 𝑥 ∈ ( 𝑤𝐴 ) → 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) → ( 𝑥𝐵 → ( 𝑘 < 𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) )
222 221 ralimdv2 ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) → ( ∀ 𝑥 ∈ ( 𝑤𝐴 ) 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) → ∀ 𝑥𝐵 ( 𝑘 < 𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) )
223 222 imp ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) ∧ ∀ 𝑥 ∈ ( 𝑤𝐴 ) 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) → ∀ 𝑥𝐵 ( 𝑘 < 𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) )
224 223 an32s ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ∀ 𝑥 ∈ ( 𝑤𝐴 ) 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) ∧ ( 𝑘 ∈ ℝ ∧ ( 𝑘 (,] +∞ ) ⊆ 𝑤 ) ) → ∀ 𝑥𝐵 ( 𝑘 < 𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) )
225 224 expr ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ∀ 𝑥 ∈ ( 𝑤𝐴 ) 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) ∧ 𝑘 ∈ ℝ ) → ( ( 𝑘 (,] +∞ ) ⊆ 𝑤 → ∀ 𝑥𝐵 ( 𝑘 < 𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) )
226 225 reximdva ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ∀ 𝑥 ∈ ( 𝑤𝐴 ) 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) → ( ∃ 𝑘 ∈ ℝ ( 𝑘 (,] +∞ ) ⊆ 𝑤 → ∃ 𝑘 ∈ ℝ ∀ 𝑥𝐵 ( 𝑘 < 𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) )
227 226 ex ( ( 𝜑𝑟 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ ( 𝑤𝐴 ) 𝑅 ∈ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) → ( ∃ 𝑘 ∈ ℝ ( 𝑘 (,] +∞ ) ⊆ 𝑤 → ∃ 𝑘 ∈ ℝ ∀ 𝑥𝐵 ( 𝑘 < 𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) )
228 189 227 syld ( ( 𝜑𝑟 ∈ ℝ+ ) → ( ( ( 𝑥𝐴𝑅 ) “ ( 𝑤𝐴 ) ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) → ( ∃ 𝑘 ∈ ℝ ( 𝑘 (,] +∞ ) ⊆ 𝑤 → ∃ 𝑘 ∈ ℝ ∀ 𝑥𝐵 ( 𝑘 < 𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) )
229 228 com23 ( ( 𝜑𝑟 ∈ ℝ+ ) → ( ∃ 𝑘 ∈ ℝ ( 𝑘 (,] +∞ ) ⊆ 𝑤 → ( ( ( 𝑥𝐴𝑅 ) “ ( 𝑤𝐴 ) ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥𝐵 ( 𝑘 < 𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) )
230 171 229 syl5 ( ( 𝜑𝑟 ∈ ℝ+ ) → ( ( 𝑤 ∈ ( ordTop ‘ ≤ ) ∧ +∞ ∈ ( 𝑤𝐴 ) ) → ( ( ( 𝑥𝐴𝑅 ) “ ( 𝑤𝐴 ) ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥𝐵 ( 𝑘 < 𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) ) )
231 230 impl ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ 𝑤 ∈ ( ordTop ‘ ≤ ) ) ∧ +∞ ∈ ( 𝑤𝐴 ) ) → ( ( ( 𝑥𝐴𝑅 ) “ ( 𝑤𝐴 ) ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥𝐵 ( 𝑘 < 𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) )
232 231 expimpd ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ 𝑤 ∈ ( ordTop ‘ ≤ ) ) → ( ( +∞ ∈ ( 𝑤𝐴 ) ∧ ( ( 𝑥𝐴𝑅 ) “ ( 𝑤𝐴 ) ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥𝐵 ( 𝑘 < 𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) )
233 232 rexlimdva ( ( 𝜑𝑟 ∈ ℝ+ ) → ( ∃ 𝑤 ∈ ( ordTop ‘ ≤ ) ( +∞ ∈ ( 𝑤𝐴 ) ∧ ( ( 𝑥𝐴𝑅 ) “ ( 𝑤𝐴 ) ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥𝐵 ( 𝑘 < 𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) )
234 233 adantlr ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑤 ∈ ( ordTop ‘ ≤ ) ( +∞ ∈ ( 𝑤𝐴 ) ∧ ( ( 𝑥𝐴𝑅 ) “ ( 𝑤𝐴 ) ) ⊆ ( 𝐶 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥𝐵 ( 𝑘 < 𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) )
235 168 234 mpd ( ( ( 𝜑 ∧ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑘 ∈ ℝ ∀ 𝑥𝐵 ( 𝑘 < 𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) )
236 235 ralrimiva ( ( 𝜑 ∧ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) → ∀ 𝑟 ∈ ℝ+𝑘 ∈ ℝ ∀ 𝑥𝐵 ( 𝑘 < 𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) )
237 28 2 17 rlim2lt ( 𝜑 → ( ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 ↔ ∀ 𝑟 ∈ ℝ+𝑘 ∈ ℝ ∀ 𝑥𝐵 ( 𝑘 < 𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) )
238 237 adantr ( ( 𝜑 ∧ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) → ( ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 ↔ ∀ 𝑟 ∈ ℝ+𝑘 ∈ ℝ ∀ 𝑥𝐵 ( 𝑘 < 𝑥 → ( abs ‘ ( 𝑅𝐶 ) ) < 𝑟 ) ) )
239 236 238 mpbird ( ( 𝜑 ∧ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) → ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 )
240 142 239 impbida ( 𝜑 → ( ( 𝑥𝐵𝑅 ) ⇝𝑟 𝐶 ↔ ( 𝑥𝐴𝑅 ) ∈ ( ( 𝐾 CnP 𝐽 ) ‘ +∞ ) ) )