| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efrlim.1 |
⊢ 𝑆 = ( 0 ( ball ‘ ( abs ∘ − ) ) ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ) |
| 2 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 3 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 4 |
2 3
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
| 5 |
4
|
sseli |
⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → 𝑥 ∈ ℂ ) |
| 6 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ¬ 𝑥 = 0 ) → 𝐴 ∈ ℂ ) |
| 7 |
|
1cnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ¬ 𝑥 = 0 ) → 1 ∈ ℂ ) |
| 8 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ¬ 𝑥 = 0 ) → 𝑥 ∈ ℂ ) |
| 9 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 10 |
9
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ¬ 𝑥 = 0 ) → 1 ≠ 0 ) |
| 11 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ¬ 𝑥 = 0 ) → ¬ 𝑥 = 0 ) |
| 12 |
11
|
neqned |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ¬ 𝑥 = 0 ) → 𝑥 ≠ 0 ) |
| 13 |
6 7 8 10 12
|
divdiv2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ¬ 𝑥 = 0 ) → ( 𝐴 / ( 1 / 𝑥 ) ) = ( ( 𝐴 · 𝑥 ) / 1 ) ) |
| 14 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ¬ 𝑥 = 0 ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
| 16 |
15
|
div1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ¬ 𝑥 = 0 ) → ( ( 𝐴 · 𝑥 ) / 1 ) = ( 𝐴 · 𝑥 ) ) |
| 17 |
13 16
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ¬ 𝑥 = 0 ) → ( 𝐴 / ( 1 / 𝑥 ) ) = ( 𝐴 · 𝑥 ) ) |
| 18 |
17
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ¬ 𝑥 = 0 ) → ( 1 + ( 𝐴 / ( 1 / 𝑥 ) ) ) = ( 1 + ( 𝐴 · 𝑥 ) ) ) |
| 19 |
18
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ¬ 𝑥 = 0 ) → ( ( 1 + ( 𝐴 / ( 1 / 𝑥 ) ) ) ↑𝑐 ( 1 / 𝑥 ) ) = ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) |
| 20 |
19
|
ifeq2da |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 / ( 1 / 𝑥 ) ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) = if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) |
| 21 |
5 20
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ( 0 [,) +∞ ) ) → if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 / ( 1 / 𝑥 ) ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) = if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) |
| 22 |
21
|
mpteq2dva |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 / ( 1 / 𝑥 ) ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) ) |
| 23 |
|
resmpt |
⊢ ( ( 0 [,) +∞ ) ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) ↾ ( 0 [,) +∞ ) ) = ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) ) |
| 24 |
4 23
|
ax-mp |
⊢ ( ( 𝑥 ∈ ℂ ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) ↾ ( 0 [,) +∞ ) ) = ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) |
| 25 |
22 24
|
eqtr4di |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 / ( 1 / 𝑥 ) ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) = ( ( 𝑥 ∈ ℂ ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) ↾ ( 0 [,) +∞ ) ) ) |
| 26 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
| 27 |
26
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 0 ∈ ( 0 [,) +∞ ) ) |
| 28 |
|
eqeq2 |
⊢ ( ( exp ‘ ( 𝐴 · 1 ) ) = if ( ( 𝐴 · 𝑥 ) = 0 , ( exp ‘ ( 𝐴 · 1 ) ) , ( exp ‘ ( 𝐴 · ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) → ( if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) = ( exp ‘ ( 𝐴 · 1 ) ) ↔ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) = if ( ( 𝐴 · 𝑥 ) = 0 , ( exp ‘ ( 𝐴 · 1 ) ) , ( exp ‘ ( 𝐴 · ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) ) ) |
| 29 |
|
eqeq2 |
⊢ ( ( exp ‘ ( 𝐴 · ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) = if ( ( 𝐴 · 𝑥 ) = 0 , ( exp ‘ ( 𝐴 · 1 ) ) , ( exp ‘ ( 𝐴 · ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) → ( if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) = ( exp ‘ ( 𝐴 · ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ↔ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) = if ( ( 𝐴 · 𝑥 ) = 0 , ( exp ‘ ( 𝐴 · 1 ) ) , ( exp ‘ ( 𝐴 · ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) ) ) |
| 30 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
| 31 |
|
0cnd |
⊢ ( 𝐴 ∈ ℂ → 0 ∈ ℂ ) |
| 32 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 33 |
|
peano2re |
⊢ ( ( abs ‘ 𝐴 ) ∈ ℝ → ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 34 |
32 33
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 35 |
|
0red |
⊢ ( 𝐴 ∈ ℂ → 0 ∈ ℝ ) |
| 36 |
|
absge0 |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 37 |
32
|
ltp1d |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) < ( ( abs ‘ 𝐴 ) + 1 ) ) |
| 38 |
35 32 34 36 37
|
lelttrd |
⊢ ( 𝐴 ∈ ℂ → 0 < ( ( abs ‘ 𝐴 ) + 1 ) ) |
| 39 |
34 38
|
elrpd |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℝ+ ) |
| 40 |
39
|
rpreccld |
⊢ ( 𝐴 ∈ ℂ → ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ∈ ℝ+ ) |
| 41 |
40
|
rpxrd |
⊢ ( 𝐴 ∈ ℂ → ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ∈ ℝ* ) |
| 42 |
|
blssm |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ) ⊆ ℂ ) |
| 43 |
30 31 41 42
|
mp3an2i |
⊢ ( 𝐴 ∈ ℂ → ( 0 ( ball ‘ ( abs ∘ − ) ) ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ) ⊆ ℂ ) |
| 44 |
1 43
|
eqsstrid |
⊢ ( 𝐴 ∈ ℂ → 𝑆 ⊆ ℂ ) |
| 45 |
44
|
sselda |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ℂ ) |
| 46 |
|
mul0or |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( 𝐴 · 𝑥 ) = 0 ↔ ( 𝐴 = 0 ∨ 𝑥 = 0 ) ) ) |
| 47 |
45 46
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐴 · 𝑥 ) = 0 ↔ ( 𝐴 = 0 ∨ 𝑥 = 0 ) ) ) |
| 48 |
8 12
|
reccld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ¬ 𝑥 = 0 ) → ( 1 / 𝑥 ) ∈ ℂ ) |
| 49 |
45 48
|
syldanl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ¬ 𝑥 = 0 ) → ( 1 / 𝑥 ) ∈ ℂ ) |
| 50 |
49
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = 0 ) ∧ ¬ 𝑥 = 0 ) → ( 1 / 𝑥 ) ∈ ℂ ) |
| 51 |
50
|
1cxpd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = 0 ) ∧ ¬ 𝑥 = 0 ) → ( 1 ↑𝑐 ( 1 / 𝑥 ) ) = 1 ) |
| 52 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = 0 ) ∧ ¬ 𝑥 = 0 ) → 𝐴 = 0 ) |
| 53 |
52
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = 0 ) ∧ ¬ 𝑥 = 0 ) → ( 𝐴 · 𝑥 ) = ( 0 · 𝑥 ) ) |
| 54 |
45
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = 0 ) ∧ ¬ 𝑥 = 0 ) → 𝑥 ∈ ℂ ) |
| 55 |
54
|
mul02d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = 0 ) ∧ ¬ 𝑥 = 0 ) → ( 0 · 𝑥 ) = 0 ) |
| 56 |
53 55
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = 0 ) ∧ ¬ 𝑥 = 0 ) → ( 𝐴 · 𝑥 ) = 0 ) |
| 57 |
56
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = 0 ) ∧ ¬ 𝑥 = 0 ) → ( 1 + ( 𝐴 · 𝑥 ) ) = ( 1 + 0 ) ) |
| 58 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
| 59 |
57 58
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = 0 ) ∧ ¬ 𝑥 = 0 ) → ( 1 + ( 𝐴 · 𝑥 ) ) = 1 ) |
| 60 |
59
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = 0 ) ∧ ¬ 𝑥 = 0 ) → ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) = ( 1 ↑𝑐 ( 1 / 𝑥 ) ) ) |
| 61 |
52
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = 0 ) ∧ ¬ 𝑥 = 0 ) → ( exp ‘ 𝐴 ) = ( exp ‘ 0 ) ) |
| 62 |
|
ef0 |
⊢ ( exp ‘ 0 ) = 1 |
| 63 |
61 62
|
eqtrdi |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = 0 ) ∧ ¬ 𝑥 = 0 ) → ( exp ‘ 𝐴 ) = 1 ) |
| 64 |
51 60 63
|
3eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = 0 ) ∧ ¬ 𝑥 = 0 ) → ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) = ( exp ‘ 𝐴 ) ) |
| 65 |
64
|
ifeq2da |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = 0 ) → if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) = if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( exp ‘ 𝐴 ) ) ) |
| 66 |
|
ifid |
⊢ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( exp ‘ 𝐴 ) ) = ( exp ‘ 𝐴 ) |
| 67 |
65 66
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ 𝐴 = 0 ) → if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) = ( exp ‘ 𝐴 ) ) |
| 68 |
|
iftrue |
⊢ ( 𝑥 = 0 → if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) = ( exp ‘ 𝐴 ) ) |
| 69 |
68
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑥 = 0 ) → if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) = ( exp ‘ 𝐴 ) ) |
| 70 |
67 69
|
jaodan |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 = 0 ∨ 𝑥 = 0 ) ) → if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) = ( exp ‘ 𝐴 ) ) |
| 71 |
|
mulrid |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 1 ) = 𝐴 ) |
| 72 |
71
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 = 0 ∨ 𝑥 = 0 ) ) → ( 𝐴 · 1 ) = 𝐴 ) |
| 73 |
72
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 = 0 ∨ 𝑥 = 0 ) ) → ( exp ‘ ( 𝐴 · 1 ) ) = ( exp ‘ 𝐴 ) ) |
| 74 |
70 73
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 = 0 ∨ 𝑥 = 0 ) ) → if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) = ( exp ‘ ( 𝐴 · 1 ) ) ) |
| 75 |
47 74
|
sylbida |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 · 𝑥 ) = 0 ) → if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) = ( exp ‘ ( 𝐴 · 1 ) ) ) |
| 76 |
|
mulne0b |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ↔ ( 𝐴 · 𝑥 ) ≠ 0 ) ) |
| 77 |
45 76
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ↔ ( 𝐴 · 𝑥 ) ≠ 0 ) ) |
| 78 |
|
df-ne |
⊢ ( ( 𝐴 · 𝑥 ) ≠ 0 ↔ ¬ ( 𝐴 · 𝑥 ) = 0 ) |
| 79 |
77 78
|
bitrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ↔ ¬ ( 𝐴 · 𝑥 ) = 0 ) ) |
| 80 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → 𝑥 ≠ 0 ) |
| 81 |
80
|
neneqd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → ¬ 𝑥 = 0 ) |
| 82 |
81
|
iffalsed |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) = ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) |
| 83 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 84 |
45 14
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
| 85 |
|
addcl |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 · 𝑥 ) ∈ ℂ ) → ( 1 + ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
| 86 |
83 84 85
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( 1 + ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
| 87 |
86
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → ( 1 + ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
| 88 |
|
eqid |
⊢ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) = ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) |
| 89 |
88
|
dvlog2lem |
⊢ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ( ℂ ∖ ( -∞ (,] 0 ) ) |
| 90 |
|
eqid |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) ) |
| 91 |
90
|
logdmss |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) ⊆ ( ℂ ∖ { 0 } ) |
| 92 |
89 91
|
sstri |
⊢ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ( ℂ ∖ { 0 } ) |
| 93 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
| 94 |
93
|
cnmetdval |
⊢ ( ( ( 1 + ( 𝐴 · 𝑥 ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 1 + ( 𝐴 · 𝑥 ) ) ( abs ∘ − ) 1 ) = ( abs ‘ ( ( 1 + ( 𝐴 · 𝑥 ) ) − 1 ) ) ) |
| 95 |
86 83 94
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( ( 1 + ( 𝐴 · 𝑥 ) ) ( abs ∘ − ) 1 ) = ( abs ‘ ( ( 1 + ( 𝐴 · 𝑥 ) ) − 1 ) ) ) |
| 96 |
|
pncan2 |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 · 𝑥 ) ∈ ℂ ) → ( ( 1 + ( 𝐴 · 𝑥 ) ) − 1 ) = ( 𝐴 · 𝑥 ) ) |
| 97 |
83 84 96
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( ( 1 + ( 𝐴 · 𝑥 ) ) − 1 ) = ( 𝐴 · 𝑥 ) ) |
| 98 |
97
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( ( 1 + ( 𝐴 · 𝑥 ) ) − 1 ) ) = ( abs ‘ ( 𝐴 · 𝑥 ) ) ) |
| 99 |
95 98
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( ( 1 + ( 𝐴 · 𝑥 ) ) ( abs ∘ − ) 1 ) = ( abs ‘ ( 𝐴 · 𝑥 ) ) ) |
| 100 |
84
|
abscld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( 𝐴 · 𝑥 ) ) ∈ ℝ ) |
| 101 |
34
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 102 |
45
|
abscld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ 𝑥 ) ∈ ℝ ) |
| 103 |
101 102
|
remulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( ( ( abs ‘ 𝐴 ) + 1 ) · ( abs ‘ 𝑥 ) ) ∈ ℝ ) |
| 104 |
|
1red |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → 1 ∈ ℝ ) |
| 105 |
|
absmul |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( abs ‘ ( 𝐴 · 𝑥 ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝑥 ) ) ) |
| 106 |
45 105
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( 𝐴 · 𝑥 ) ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝑥 ) ) ) |
| 107 |
32
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 108 |
107 33
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 109 |
45
|
absge0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → 0 ≤ ( abs ‘ 𝑥 ) ) |
| 110 |
107
|
lep1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ 𝐴 ) ≤ ( ( abs ‘ 𝐴 ) + 1 ) ) |
| 111 |
107 108 102 109 110
|
lemul1ad |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝑥 ) ) ≤ ( ( ( abs ‘ 𝐴 ) + 1 ) · ( abs ‘ 𝑥 ) ) ) |
| 112 |
106 111
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( 𝐴 · 𝑥 ) ) ≤ ( ( ( abs ‘ 𝐴 ) + 1 ) · ( abs ‘ 𝑥 ) ) ) |
| 113 |
|
0cn |
⊢ 0 ∈ ℂ |
| 114 |
93
|
cnmetdval |
⊢ ( ( 𝑥 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 𝑥 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑥 − 0 ) ) ) |
| 115 |
45 113 114
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑥 − 0 ) ) ) |
| 116 |
45
|
subid1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 − 0 ) = 𝑥 ) |
| 117 |
116
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( 𝑥 − 0 ) ) = ( abs ‘ 𝑥 ) ) |
| 118 |
115 117
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ( abs ∘ − ) 0 ) = ( abs ‘ 𝑥 ) ) |
| 119 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) |
| 120 |
119 1
|
eleqtrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ) ) |
| 121 |
30
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) |
| 122 |
41
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ∈ ℝ* ) |
| 123 |
|
0cnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → 0 ∈ ℂ ) |
| 124 |
|
elbl3 |
⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ∈ ℝ* ) ∧ ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑥 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ) ↔ ( 𝑥 ( abs ∘ − ) 0 ) < ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ) ) |
| 125 |
121 122 123 45 124
|
syl22anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ) ↔ ( 𝑥 ( abs ∘ − ) 0 ) < ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ) ) |
| 126 |
120 125
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ( abs ∘ − ) 0 ) < ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ) |
| 127 |
118 126
|
eqbrtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ 𝑥 ) < ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ) |
| 128 |
38
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → 0 < ( ( abs ‘ 𝐴 ) + 1 ) ) |
| 129 |
|
ltmuldiv2 |
⊢ ( ( ( abs ‘ 𝑥 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℝ ∧ 0 < ( ( abs ‘ 𝐴 ) + 1 ) ) ) → ( ( ( ( abs ‘ 𝐴 ) + 1 ) · ( abs ‘ 𝑥 ) ) < 1 ↔ ( abs ‘ 𝑥 ) < ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ) ) |
| 130 |
102 104 108 128 129
|
syl112anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( ( ( ( abs ‘ 𝐴 ) + 1 ) · ( abs ‘ 𝑥 ) ) < 1 ↔ ( abs ‘ 𝑥 ) < ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ) ) |
| 131 |
127 130
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( ( ( abs ‘ 𝐴 ) + 1 ) · ( abs ‘ 𝑥 ) ) < 1 ) |
| 132 |
100 103 104 112 131
|
lelttrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( 𝐴 · 𝑥 ) ) < 1 ) |
| 133 |
99 132
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( ( 1 + ( 𝐴 · 𝑥 ) ) ( abs ∘ − ) 1 ) < 1 ) |
| 134 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 135 |
|
rpxr |
⊢ ( 1 ∈ ℝ+ → 1 ∈ ℝ* ) |
| 136 |
134 135
|
mp1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → 1 ∈ ℝ* ) |
| 137 |
|
1cnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → 1 ∈ ℂ ) |
| 138 |
|
elbl3 |
⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℝ* ) ∧ ( 1 ∈ ℂ ∧ ( 1 + ( 𝐴 · 𝑥 ) ) ∈ ℂ ) ) → ( ( 1 + ( 𝐴 · 𝑥 ) ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( ( 1 + ( 𝐴 · 𝑥 ) ) ( abs ∘ − ) 1 ) < 1 ) ) |
| 139 |
121 136 137 86 138
|
syl22anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( ( 1 + ( 𝐴 · 𝑥 ) ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( ( 1 + ( 𝐴 · 𝑥 ) ) ( abs ∘ − ) 1 ) < 1 ) ) |
| 140 |
133 139
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( 1 + ( 𝐴 · 𝑥 ) ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 141 |
92 140
|
sselid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( 1 + ( 𝐴 · 𝑥 ) ) ∈ ( ℂ ∖ { 0 } ) ) |
| 142 |
|
eldifsni |
⊢ ( ( 1 + ( 𝐴 · 𝑥 ) ) ∈ ( ℂ ∖ { 0 } ) → ( 1 + ( 𝐴 · 𝑥 ) ) ≠ 0 ) |
| 143 |
141 142
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( 1 + ( 𝐴 · 𝑥 ) ) ≠ 0 ) |
| 144 |
143
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → ( 1 + ( 𝐴 · 𝑥 ) ) ≠ 0 ) |
| 145 |
45
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → 𝑥 ∈ ℂ ) |
| 146 |
145 80
|
reccld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → ( 1 / 𝑥 ) ∈ ℂ ) |
| 147 |
87 144 146
|
cxpefd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) = ( exp ‘ ( ( 1 / 𝑥 ) · ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) ) ) ) |
| 148 |
86 143
|
logcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) ∈ ℂ ) |
| 149 |
148
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) ∈ ℂ ) |
| 150 |
146 149
|
mulcomd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → ( ( 1 / 𝑥 ) · ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) ) = ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) · ( 1 / 𝑥 ) ) ) |
| 151 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → 𝐴 ∈ ℂ ) |
| 152 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → 𝐴 ≠ 0 ) |
| 153 |
151 152
|
dividd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → ( 𝐴 / 𝐴 ) = 1 ) |
| 154 |
153
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → ( ( 𝐴 / 𝐴 ) / 𝑥 ) = ( 1 / 𝑥 ) ) |
| 155 |
151 151 145 152 80
|
divdiv1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → ( ( 𝐴 / 𝐴 ) / 𝑥 ) = ( 𝐴 / ( 𝐴 · 𝑥 ) ) ) |
| 156 |
154 155
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → ( 1 / 𝑥 ) = ( 𝐴 / ( 𝐴 · 𝑥 ) ) ) |
| 157 |
156
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) · ( 1 / 𝑥 ) ) = ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) · ( 𝐴 / ( 𝐴 · 𝑥 ) ) ) ) |
| 158 |
84
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
| 159 |
77
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → ( 𝐴 · 𝑥 ) ≠ 0 ) |
| 160 |
149 151 158 159
|
div12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) · ( 𝐴 / ( 𝐴 · 𝑥 ) ) ) = ( 𝐴 · ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) |
| 161 |
150 157 160
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → ( ( 1 / 𝑥 ) · ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) ) = ( 𝐴 · ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) |
| 162 |
161
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → ( exp ‘ ( ( 1 / 𝑥 ) · ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) ) ) = ( exp ‘ ( 𝐴 · ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) |
| 163 |
82 147 162
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) ) → if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) = ( exp ‘ ( 𝐴 · ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) |
| 164 |
163
|
ex |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐴 ≠ 0 ∧ 𝑥 ≠ 0 ) → if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) = ( exp ‘ ( 𝐴 · ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) ) |
| 165 |
79 164
|
sylbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( ¬ ( 𝐴 · 𝑥 ) = 0 → if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) = ( exp ‘ ( 𝐴 · ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) ) |
| 166 |
165
|
imp |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ¬ ( 𝐴 · 𝑥 ) = 0 ) → if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) = ( exp ‘ ( 𝐴 · ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) |
| 167 |
28 29 75 166
|
ifbothda |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) = if ( ( 𝐴 · 𝑥 ) = 0 , ( exp ‘ ( 𝐴 · 1 ) ) , ( exp ‘ ( 𝐴 · ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) ) |
| 168 |
167
|
mpteq2dva |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ 𝑆 ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝑆 ↦ if ( ( 𝐴 · 𝑥 ) = 0 , ( exp ‘ ( 𝐴 · 1 ) ) , ( exp ‘ ( 𝐴 · ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) ) ) |
| 169 |
44
|
resmptd |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ ℂ ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) ↾ 𝑆 ) = ( 𝑥 ∈ 𝑆 ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) ) |
| 170 |
|
1cnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝐴 · 𝑥 ) = 0 ) → 1 ∈ ℂ ) |
| 171 |
148
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ¬ ( 𝐴 · 𝑥 ) = 0 ) → ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) ∈ ℂ ) |
| 172 |
84
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ¬ ( 𝐴 · 𝑥 ) = 0 ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
| 173 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ¬ ( 𝐴 · 𝑥 ) = 0 ) → ¬ ( 𝐴 · 𝑥 ) = 0 ) |
| 174 |
173
|
neqned |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ¬ ( 𝐴 · 𝑥 ) = 0 ) → ( 𝐴 · 𝑥 ) ≠ 0 ) |
| 175 |
171 172 174
|
divcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) ∧ ¬ ( 𝐴 · 𝑥 ) = 0 ) → ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
| 176 |
170 175
|
ifclda |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ∈ ℂ ) |
| 177 |
|
eqidd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ 𝑆 ↦ if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝑆 ↦ if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) |
| 178 |
|
eqidd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( exp ‘ ( 𝐴 · 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( exp ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 179 |
|
oveq2 |
⊢ ( 𝑦 = if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) → ( 𝐴 · 𝑦 ) = ( 𝐴 · if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) |
| 180 |
179
|
fveq2d |
⊢ ( 𝑦 = if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) → ( exp ‘ ( 𝐴 · 𝑦 ) ) = ( exp ‘ ( 𝐴 · if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) ) |
| 181 |
|
oveq2 |
⊢ ( if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) = 1 → ( 𝐴 · if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) = ( 𝐴 · 1 ) ) |
| 182 |
181
|
fveq2d |
⊢ ( if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) = 1 → ( exp ‘ ( 𝐴 · if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) = ( exp ‘ ( 𝐴 · 1 ) ) ) |
| 183 |
|
oveq2 |
⊢ ( if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) = ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) → ( 𝐴 · if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) = ( 𝐴 · ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) |
| 184 |
183
|
fveq2d |
⊢ ( if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) = ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) → ( exp ‘ ( 𝐴 · if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) = ( exp ‘ ( 𝐴 · ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) |
| 185 |
182 184
|
ifsb |
⊢ ( exp ‘ ( 𝐴 · if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) = if ( ( 𝐴 · 𝑥 ) = 0 , ( exp ‘ ( 𝐴 · 1 ) ) , ( exp ‘ ( 𝐴 · ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) |
| 186 |
180 185
|
eqtrdi |
⊢ ( 𝑦 = if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) → ( exp ‘ ( 𝐴 · 𝑦 ) ) = if ( ( 𝐴 · 𝑥 ) = 0 , ( exp ‘ ( 𝐴 · 1 ) ) , ( exp ‘ ( 𝐴 · ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) ) |
| 187 |
176 177 178 186
|
fmptco |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑦 ∈ ℂ ↦ ( exp ‘ ( 𝐴 · 𝑦 ) ) ) ∘ ( 𝑥 ∈ 𝑆 ↦ if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) = ( 𝑥 ∈ 𝑆 ↦ if ( ( 𝐴 · 𝑥 ) = 0 , ( exp ‘ ( 𝐴 · 1 ) ) , ( exp ‘ ( 𝐴 · ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) ) ) |
| 188 |
168 169 187
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ ℂ ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) ↾ 𝑆 ) = ( ( 𝑦 ∈ ℂ ↦ ( exp ‘ ( 𝐴 · 𝑦 ) ) ) ∘ ( 𝑥 ∈ 𝑆 ↦ if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) ) |
| 189 |
|
eqidd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ) |
| 190 |
|
eqidd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ if ( 𝑦 = 1 , 1 , ( ( log ‘ 𝑦 ) / ( 𝑦 − 1 ) ) ) ) = ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ if ( 𝑦 = 1 , 1 , ( ( log ‘ 𝑦 ) / ( 𝑦 − 1 ) ) ) ) ) |
| 191 |
|
eqeq1 |
⊢ ( 𝑦 = ( 1 + ( 𝐴 · 𝑥 ) ) → ( 𝑦 = 1 ↔ ( 1 + ( 𝐴 · 𝑥 ) ) = 1 ) ) |
| 192 |
|
fveq2 |
⊢ ( 𝑦 = ( 1 + ( 𝐴 · 𝑥 ) ) → ( log ‘ 𝑦 ) = ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) ) |
| 193 |
|
oveq1 |
⊢ ( 𝑦 = ( 1 + ( 𝐴 · 𝑥 ) ) → ( 𝑦 − 1 ) = ( ( 1 + ( 𝐴 · 𝑥 ) ) − 1 ) ) |
| 194 |
192 193
|
oveq12d |
⊢ ( 𝑦 = ( 1 + ( 𝐴 · 𝑥 ) ) → ( ( log ‘ 𝑦 ) / ( 𝑦 − 1 ) ) = ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( ( 1 + ( 𝐴 · 𝑥 ) ) − 1 ) ) ) |
| 195 |
191 194
|
ifbieq2d |
⊢ ( 𝑦 = ( 1 + ( 𝐴 · 𝑥 ) ) → if ( 𝑦 = 1 , 1 , ( ( log ‘ 𝑦 ) / ( 𝑦 − 1 ) ) ) = if ( ( 1 + ( 𝐴 · 𝑥 ) ) = 1 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( ( 1 + ( 𝐴 · 𝑥 ) ) − 1 ) ) ) ) |
| 196 |
140 189 190 195
|
fmptco |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ if ( 𝑦 = 1 , 1 , ( ( log ‘ 𝑦 ) / ( 𝑦 − 1 ) ) ) ) ∘ ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝑆 ↦ if ( ( 1 + ( 𝐴 · 𝑥 ) ) = 1 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( ( 1 + ( 𝐴 · 𝑥 ) ) − 1 ) ) ) ) ) |
| 197 |
58
|
eqeq2i |
⊢ ( ( 1 + ( 𝐴 · 𝑥 ) ) = ( 1 + 0 ) ↔ ( 1 + ( 𝐴 · 𝑥 ) ) = 1 ) |
| 198 |
137 84 123
|
addcand |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( ( 1 + ( 𝐴 · 𝑥 ) ) = ( 1 + 0 ) ↔ ( 𝐴 · 𝑥 ) = 0 ) ) |
| 199 |
197 198
|
bitr3id |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( ( 1 + ( 𝐴 · 𝑥 ) ) = 1 ↔ ( 𝐴 · 𝑥 ) = 0 ) ) |
| 200 |
97
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( ( 1 + ( 𝐴 · 𝑥 ) ) − 1 ) ) = ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) |
| 201 |
199 200
|
ifbieq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑆 ) → if ( ( 1 + ( 𝐴 · 𝑥 ) ) = 1 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( ( 1 + ( 𝐴 · 𝑥 ) ) − 1 ) ) ) = if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) |
| 202 |
201
|
mpteq2dva |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ 𝑆 ↦ if ( ( 1 + ( 𝐴 · 𝑥 ) ) = 1 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( ( 1 + ( 𝐴 · 𝑥 ) ) − 1 ) ) ) ) = ( 𝑥 ∈ 𝑆 ↦ if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) |
| 203 |
196 202
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ if ( 𝑦 = 1 , 1 , ( ( log ‘ 𝑦 ) / ( 𝑦 − 1 ) ) ) ) ∘ ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝑆 ↦ if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) |
| 204 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
| 205 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 206 |
205
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 207 |
206
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 208 |
|
1cnd |
⊢ ( 𝐴 ∈ ℂ → 1 ∈ ℂ ) |
| 209 |
207 207 208
|
cnmptc |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ 1 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 210 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
| 211 |
207 207 210
|
cnmptc |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ 𝐴 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 212 |
207
|
cnmptid |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 213 |
205
|
mpomulcn |
⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 214 |
213
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 215 |
|
oveq12 |
⊢ ( ( 𝑢 = 𝐴 ∧ 𝑣 = 𝑥 ) → ( 𝑢 · 𝑣 ) = ( 𝐴 · 𝑥 ) ) |
| 216 |
207 211 212 207 207 214 215
|
cnmpt12 |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ ( 𝐴 · 𝑥 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 217 |
205
|
addcn |
⊢ + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 218 |
217
|
a1i |
⊢ ( 𝐴 ∈ ℂ → + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 219 |
207 209 216 218
|
cnmpt12f |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 220 |
204 207 44 219
|
cnmpt1res |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 221 |
140
|
fmpttd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) : 𝑆 ⟶ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 222 |
221
|
frnd |
⊢ ( 𝐴 ∈ ℂ → ran ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ⊆ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 223 |
|
difss |
⊢ ( ℂ ∖ { 0 } ) ⊆ ℂ |
| 224 |
92 223
|
sstri |
⊢ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ |
| 225 |
224
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ ) |
| 226 |
|
cnrest2 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ⊆ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ∧ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ ) → ( ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) ) ) |
| 227 |
206 222 225 226
|
mp3an2i |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) ) ) |
| 228 |
220 227
|
mpbid |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) ) |
| 229 |
|
blcntr |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ∈ ℝ+ ) → 0 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ) ) |
| 230 |
30 31 40 229
|
mp3an2i |
⊢ ( 𝐴 ∈ ℂ → 0 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ) ) |
| 231 |
230 1
|
eleqtrrdi |
⊢ ( 𝐴 ∈ ℂ → 0 ∈ 𝑆 ) |
| 232 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 233 |
206 44 232
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 234 |
|
toponuni |
⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 235 |
233 234
|
syl |
⊢ ( 𝐴 ∈ ℂ → 𝑆 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 236 |
231 235
|
eleqtrd |
⊢ ( 𝐴 ∈ ℂ → 0 ∈ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) |
| 237 |
|
eqid |
⊢ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) |
| 238 |
237
|
cncnpi |
⊢ ( ( ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) ∧ 0 ∈ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) → ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( ( TopOpen ‘ ℂfld ) ↾t ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) ‘ 0 ) ) |
| 239 |
228 236 238
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( ( TopOpen ‘ ℂfld ) ↾t ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) ‘ 0 ) ) |
| 240 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
| 241 |
|
logf1o |
⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log |
| 242 |
|
f1of |
⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → log : ( ℂ ∖ { 0 } ) ⟶ ran log ) |
| 243 |
241 242
|
ax-mp |
⊢ log : ( ℂ ∖ { 0 } ) ⟶ ran log |
| 244 |
|
logrncn |
⊢ ( 𝑥 ∈ ran log → 𝑥 ∈ ℂ ) |
| 245 |
244
|
ssriv |
⊢ ran log ⊆ ℂ |
| 246 |
|
fss |
⊢ ( ( log : ( ℂ ∖ { 0 } ) ⟶ ran log ∧ ran log ⊆ ℂ ) → log : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |
| 247 |
243 245 246
|
mp2an |
⊢ log : ( ℂ ∖ { 0 } ) ⟶ ℂ |
| 248 |
|
fssres |
⊢ ( ( log : ( ℂ ∖ { 0 } ) ⟶ ℂ ∧ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ( ℂ ∖ { 0 } ) ) → ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) : ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⟶ ℂ ) |
| 249 |
247 92 248
|
mp2an |
⊢ ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) : ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⟶ ℂ |
| 250 |
|
blcntr |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ+ ) → 1 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 251 |
30 83 134 250
|
mp3an |
⊢ 1 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) |
| 252 |
|
ovex |
⊢ ( 1 / 𝑦 ) ∈ V |
| 253 |
88
|
dvlog2 |
⊢ ( ℂ D ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) = ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / 𝑦 ) ) |
| 254 |
252 253
|
dmmpti |
⊢ dom ( ℂ D ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) = ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) |
| 255 |
251 254
|
eleqtrri |
⊢ 1 ∈ dom ( ℂ D ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 256 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 257 |
253
|
fveq1i |
⊢ ( ( ℂ D ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) ‘ 1 ) = ( ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / 𝑦 ) ) ‘ 1 ) |
| 258 |
|
oveq2 |
⊢ ( 𝑦 = 1 → ( 1 / 𝑦 ) = ( 1 / 1 ) ) |
| 259 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
| 260 |
258 259
|
eqtrdi |
⊢ ( 𝑦 = 1 → ( 1 / 𝑦 ) = 1 ) |
| 261 |
|
eqid |
⊢ ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / 𝑦 ) ) = ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / 𝑦 ) ) |
| 262 |
|
1ex |
⊢ 1 ∈ V |
| 263 |
260 261 262
|
fvmpt |
⊢ ( 1 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / 𝑦 ) ) ‘ 1 ) = 1 ) |
| 264 |
251 263
|
ax-mp |
⊢ ( ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ ( 1 / 𝑦 ) ) ‘ 1 ) = 1 |
| 265 |
257 264
|
eqtr2i |
⊢ 1 = ( ( ℂ D ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) ‘ 1 ) |
| 266 |
265
|
a1i |
⊢ ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → 1 = ( ( ℂ D ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) ‘ 1 ) ) |
| 267 |
|
fvres |
⊢ ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ‘ 𝑦 ) = ( log ‘ 𝑦 ) ) |
| 268 |
|
fvres |
⊢ ( 1 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ‘ 1 ) = ( log ‘ 1 ) ) |
| 269 |
251 268
|
mp1i |
⊢ ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ‘ 1 ) = ( log ‘ 1 ) ) |
| 270 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
| 271 |
269 270
|
eqtrdi |
⊢ ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ‘ 1 ) = 0 ) |
| 272 |
267 271
|
oveq12d |
⊢ ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ‘ 𝑦 ) − ( ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ‘ 1 ) ) = ( ( log ‘ 𝑦 ) − 0 ) ) |
| 273 |
92
|
sseli |
⊢ ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → 𝑦 ∈ ( ℂ ∖ { 0 } ) ) |
| 274 |
|
eldifsn |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) |
| 275 |
273 274
|
sylib |
⊢ ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) |
| 276 |
|
logcl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( log ‘ 𝑦 ) ∈ ℂ ) |
| 277 |
275 276
|
syl |
⊢ ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( log ‘ 𝑦 ) ∈ ℂ ) |
| 278 |
277
|
subid1d |
⊢ ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( log ‘ 𝑦 ) − 0 ) = ( log ‘ 𝑦 ) ) |
| 279 |
272 278
|
eqtr2d |
⊢ ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( log ‘ 𝑦 ) = ( ( ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ‘ 𝑦 ) − ( ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ‘ 1 ) ) ) |
| 280 |
279
|
oveq1d |
⊢ ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → ( ( log ‘ 𝑦 ) / ( 𝑦 − 1 ) ) = ( ( ( ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ‘ 𝑦 ) − ( ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ‘ 1 ) ) / ( 𝑦 − 1 ) ) ) |
| 281 |
266 280
|
ifeq12d |
⊢ ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → if ( 𝑦 = 1 , 1 , ( ( log ‘ 𝑦 ) / ( 𝑦 − 1 ) ) ) = if ( 𝑦 = 1 , ( ( ℂ D ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) ‘ 1 ) , ( ( ( ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ‘ 𝑦 ) − ( ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ‘ 1 ) ) / ( 𝑦 − 1 ) ) ) ) |
| 282 |
281
|
mpteq2ia |
⊢ ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ if ( 𝑦 = 1 , 1 , ( ( log ‘ 𝑦 ) / ( 𝑦 − 1 ) ) ) ) = ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ if ( 𝑦 = 1 , ( ( ℂ D ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) ‘ 1 ) , ( ( ( ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ‘ 𝑦 ) − ( ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ‘ 1 ) ) / ( 𝑦 − 1 ) ) ) ) |
| 283 |
256 205 282
|
dvcnp |
⊢ ( ( ( ℂ ∈ { ℝ , ℂ } ∧ ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) : ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⟶ ℂ ∧ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ ) ∧ 1 ∈ dom ( ℂ D ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) ) → ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ if ( 𝑦 = 1 , 1 , ( ( log ‘ 𝑦 ) / ( 𝑦 − 1 ) ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 1 ) ) |
| 284 |
255 283
|
mpan2 |
⊢ ( ( ℂ ∈ { ℝ , ℂ } ∧ ( log ↾ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) : ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⟶ ℂ ∧ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ ) → ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ if ( 𝑦 = 1 , 1 , ( ( log ‘ 𝑦 ) / ( 𝑦 − 1 ) ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 1 ) ) |
| 285 |
240 249 224 284
|
mp3an |
⊢ ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ if ( 𝑦 = 1 , 1 , ( ( log ‘ 𝑦 ) / ( 𝑦 − 1 ) ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 1 ) |
| 286 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 0 ) ) |
| 287 |
286
|
oveq2d |
⊢ ( 𝑥 = 0 → ( 1 + ( 𝐴 · 𝑥 ) ) = ( 1 + ( 𝐴 · 0 ) ) ) |
| 288 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) |
| 289 |
|
ovex |
⊢ ( 1 + ( 𝐴 · 0 ) ) ∈ V |
| 290 |
287 288 289
|
fvmpt |
⊢ ( 0 ∈ 𝑆 → ( ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ‘ 0 ) = ( 1 + ( 𝐴 · 0 ) ) ) |
| 291 |
231 290
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ‘ 0 ) = ( 1 + ( 𝐴 · 0 ) ) ) |
| 292 |
|
mul01 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 ) |
| 293 |
292
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( 1 + ( 𝐴 · 0 ) ) = ( 1 + 0 ) ) |
| 294 |
293 58
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( 1 + ( 𝐴 · 0 ) ) = 1 ) |
| 295 |
291 294
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ‘ 0 ) = 1 ) |
| 296 |
295
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ‘ 0 ) ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 1 ) ) |
| 297 |
285 296
|
eleqtrrid |
⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ if ( 𝑦 = 1 , 1 , ( ( log ‘ 𝑦 ) / ( 𝑦 − 1 ) ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ‘ 0 ) ) ) |
| 298 |
|
cnpco |
⊢ ( ( ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( ( TopOpen ‘ ℂfld ) ↾t ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) ‘ 0 ) ∧ ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ if ( 𝑦 = 1 , 1 , ( ( log ‘ 𝑦 ) / ( 𝑦 − 1 ) ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ‘ 0 ) ) ) → ( ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ if ( 𝑦 = 1 , 1 , ( ( log ‘ 𝑦 ) / ( 𝑦 − 1 ) ) ) ) ∘ ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 0 ) ) |
| 299 |
239 297 298
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑦 ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↦ if ( 𝑦 = 1 , 1 , ( ( log ‘ 𝑦 ) / ( 𝑦 − 1 ) ) ) ) ∘ ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( 𝐴 · 𝑥 ) ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 0 ) ) |
| 300 |
203 299
|
eqeltrrd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ 𝑆 ↦ if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 0 ) ) |
| 301 |
207 207 210
|
cnmptc |
⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ 𝐴 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 302 |
207
|
cnmptid |
⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ 𝑦 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 303 |
|
oveq12 |
⊢ ( ( 𝑢 = 𝐴 ∧ 𝑣 = 𝑦 ) → ( 𝑢 · 𝑣 ) = ( 𝐴 · 𝑦 ) ) |
| 304 |
207 301 302 207 207 214 303
|
cnmpt12 |
⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 305 |
|
efcn |
⊢ exp ∈ ( ℂ –cn→ ℂ ) |
| 306 |
205
|
cncfcn1 |
⊢ ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
| 307 |
305 306
|
eleqtri |
⊢ exp ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
| 308 |
307
|
a1i |
⊢ ( 𝐴 ∈ ℂ → exp ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 309 |
207 304 308
|
cnmpt11f |
⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( exp ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 310 |
176
|
fmpttd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ 𝑆 ↦ if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) : 𝑆 ⟶ ℂ ) |
| 311 |
310 231
|
ffvelcdmd |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ 𝑆 ↦ if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ‘ 0 ) ∈ ℂ ) |
| 312 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
| 313 |
312
|
cncnpi |
⊢ ( ( ( 𝑦 ∈ ℂ ↦ ( exp ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ∧ ( ( 𝑥 ∈ 𝑆 ↦ if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ‘ 0 ) ∈ ℂ ) → ( 𝑦 ∈ ℂ ↦ ( exp ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑥 ∈ 𝑆 ↦ if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ‘ 0 ) ) ) |
| 314 |
309 311 313
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( exp ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑥 ∈ 𝑆 ↦ if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ‘ 0 ) ) ) |
| 315 |
|
cnpco |
⊢ ( ( ( 𝑥 ∈ 𝑆 ↦ if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 0 ) ∧ ( 𝑦 ∈ ℂ ↦ ( exp ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑥 ∈ 𝑆 ↦ if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ‘ 0 ) ) ) → ( ( 𝑦 ∈ ℂ ↦ ( exp ‘ ( 𝐴 · 𝑦 ) ) ) ∘ ( 𝑥 ∈ 𝑆 ↦ if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 0 ) ) |
| 316 |
300 314 315
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑦 ∈ ℂ ↦ ( exp ‘ ( 𝐴 · 𝑦 ) ) ) ∘ ( 𝑥 ∈ 𝑆 ↦ if ( ( 𝐴 · 𝑥 ) = 0 , 1 , ( ( log ‘ ( 1 + ( 𝐴 · 𝑥 ) ) ) / ( 𝐴 · 𝑥 ) ) ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 0 ) ) |
| 317 |
188 316
|
eqeltrd |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ ℂ ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) ↾ 𝑆 ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 0 ) ) |
| 318 |
205
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 319 |
318
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( TopOpen ‘ ℂfld ) ∈ Top ) |
| 320 |
205
|
cnfldtopn |
⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) ) |
| 321 |
320
|
blopn |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 322 |
30 31 41 321
|
mp3an2i |
⊢ ( 𝐴 ∈ ℂ → ( 0 ( ball ‘ ( abs ∘ − ) ) ( 1 / ( ( abs ‘ 𝐴 ) + 1 ) ) ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 323 |
1 322
|
eqeltrid |
⊢ ( 𝐴 ∈ ℂ → 𝑆 ∈ ( TopOpen ‘ ℂfld ) ) |
| 324 |
|
isopn3i |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑆 ∈ ( TopOpen ‘ ℂfld ) ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑆 ) = 𝑆 ) |
| 325 |
318 323 324
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑆 ) = 𝑆 ) |
| 326 |
231 325
|
eleqtrrd |
⊢ ( 𝐴 ∈ ℂ → 0 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑆 ) ) |
| 327 |
|
efcl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ∈ ℂ ) |
| 328 |
327
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ 𝑥 = 0 ) → ( exp ‘ 𝐴 ) ∈ ℂ ) |
| 329 |
83 15 85
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ¬ 𝑥 = 0 ) → ( 1 + ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
| 330 |
329 48
|
cxpcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ∧ ¬ 𝑥 = 0 ) → ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ∈ ℂ ) |
| 331 |
328 330
|
ifclda |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ∈ ℂ ) |
| 332 |
331
|
fmpttd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) : ℂ ⟶ ℂ ) |
| 333 |
312 312
|
cnprest |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝑆 ⊆ ℂ ) ∧ ( 0 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝑆 ) ∧ ( 𝑥 ∈ ℂ ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) : ℂ ⟶ ℂ ) ) → ( ( 𝑥 ∈ ℂ ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 0 ) ↔ ( ( 𝑥 ∈ ℂ ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) ↾ 𝑆 ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 0 ) ) ) |
| 334 |
319 44 326 332 333
|
syl22anc |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ ℂ ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 0 ) ↔ ( ( 𝑥 ∈ ℂ ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) ↾ 𝑆 ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 0 ) ) ) |
| 335 |
317 334
|
mpbird |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 0 ) ) |
| 336 |
312
|
cnpresti |
⊢ ( ( ( 0 [,) +∞ ) ⊆ ℂ ∧ 0 ∈ ( 0 [,) +∞ ) ∧ ( 𝑥 ∈ ℂ ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 0 ) ) → ( ( 𝑥 ∈ ℂ ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) ↾ ( 0 [,) +∞ ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 0 ) ) |
| 337 |
4 27 335 336
|
mp3an2i |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ ℂ ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 · 𝑥 ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) ↾ ( 0 [,) +∞ ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 0 ) ) |
| 338 |
25 337
|
eqeltrd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 / ( 1 / 𝑥 ) ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 0 ) ) |
| 339 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 340 |
|
rpcn |
⊢ ( 𝑘 ∈ ℝ+ → 𝑘 ∈ ℂ ) |
| 341 |
340
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+ ) → 𝑘 ∈ ℂ ) |
| 342 |
|
rpne0 |
⊢ ( 𝑘 ∈ ℝ+ → 𝑘 ≠ 0 ) |
| 343 |
342
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+ ) → 𝑘 ≠ 0 ) |
| 344 |
339 341 343
|
divcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+ ) → ( 𝐴 / 𝑘 ) ∈ ℂ ) |
| 345 |
|
addcl |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 / 𝑘 ) ∈ ℂ ) → ( 1 + ( 𝐴 / 𝑘 ) ) ∈ ℂ ) |
| 346 |
83 344 345
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+ ) → ( 1 + ( 𝐴 / 𝑘 ) ) ∈ ℂ ) |
| 347 |
346 341
|
cxpcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+ ) → ( ( 1 + ( 𝐴 / 𝑘 ) ) ↑𝑐 𝑘 ) ∈ ℂ ) |
| 348 |
|
oveq2 |
⊢ ( 𝑘 = ( 1 / 𝑥 ) → ( 𝐴 / 𝑘 ) = ( 𝐴 / ( 1 / 𝑥 ) ) ) |
| 349 |
348
|
oveq2d |
⊢ ( 𝑘 = ( 1 / 𝑥 ) → ( 1 + ( 𝐴 / 𝑘 ) ) = ( 1 + ( 𝐴 / ( 1 / 𝑥 ) ) ) ) |
| 350 |
|
id |
⊢ ( 𝑘 = ( 1 / 𝑥 ) → 𝑘 = ( 1 / 𝑥 ) ) |
| 351 |
349 350
|
oveq12d |
⊢ ( 𝑘 = ( 1 / 𝑥 ) → ( ( 1 + ( 𝐴 / 𝑘 ) ) ↑𝑐 𝑘 ) = ( ( 1 + ( 𝐴 / ( 1 / 𝑥 ) ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) |
| 352 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) |
| 353 |
327 347 351 205 352
|
rlimcnp3 |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑘 ∈ ℝ+ ↦ ( ( 1 + ( 𝐴 / 𝑘 ) ) ↑𝑐 𝑘 ) ) ⇝𝑟 ( exp ‘ 𝐴 ) ↔ ( 𝑥 ∈ ( 0 [,) +∞ ) ↦ if ( 𝑥 = 0 , ( exp ‘ 𝐴 ) , ( ( 1 + ( 𝐴 / ( 1 / 𝑥 ) ) ) ↑𝑐 ( 1 / 𝑥 ) ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,) +∞ ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 0 ) ) ) |
| 354 |
338 353
|
mpbird |
⊢ ( 𝐴 ∈ ℂ → ( 𝑘 ∈ ℝ+ ↦ ( ( 1 + ( 𝐴 / 𝑘 ) ) ↑𝑐 𝑘 ) ) ⇝𝑟 ( exp ‘ 𝐴 ) ) |