| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efrlim.1 |
|- S = ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) |
| 2 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 3 |
|
ax-resscn |
|- RR C_ CC |
| 4 |
2 3
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
| 5 |
4
|
sseli |
|- ( x e. ( 0 [,) +oo ) -> x e. CC ) |
| 6 |
|
simpll |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> A e. CC ) |
| 7 |
|
1cnd |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> 1 e. CC ) |
| 8 |
|
simplr |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> x e. CC ) |
| 9 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 10 |
9
|
a1i |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> 1 =/= 0 ) |
| 11 |
|
simpr |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> -. x = 0 ) |
| 12 |
11
|
neqned |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> x =/= 0 ) |
| 13 |
6 7 8 10 12
|
divdiv2d |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( A / ( 1 / x ) ) = ( ( A x. x ) / 1 ) ) |
| 14 |
|
mulcl |
|- ( ( A e. CC /\ x e. CC ) -> ( A x. x ) e. CC ) |
| 15 |
14
|
adantr |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( A x. x ) e. CC ) |
| 16 |
15
|
div1d |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( ( A x. x ) / 1 ) = ( A x. x ) ) |
| 17 |
13 16
|
eqtrd |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( A / ( 1 / x ) ) = ( A x. x ) ) |
| 18 |
17
|
oveq2d |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( 1 + ( A / ( 1 / x ) ) ) = ( 1 + ( A x. x ) ) ) |
| 19 |
18
|
oveq1d |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) = ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) |
| 20 |
19
|
ifeq2da |
|- ( ( A e. CC /\ x e. CC ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) = if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |
| 21 |
5 20
|
sylan2 |
|- ( ( A e. CC /\ x e. ( 0 [,) +oo ) ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) = if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |
| 22 |
21
|
mpteq2dva |
|- ( A e. CC -> ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) ) = ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) ) |
| 23 |
|
resmpt |
|- ( ( 0 [,) +oo ) C_ CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` ( 0 [,) +oo ) ) = ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) ) |
| 24 |
4 23
|
ax-mp |
|- ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` ( 0 [,) +oo ) ) = ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |
| 25 |
22 24
|
eqtr4di |
|- ( A e. CC -> ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) ) = ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` ( 0 [,) +oo ) ) ) |
| 26 |
|
0e0icopnf |
|- 0 e. ( 0 [,) +oo ) |
| 27 |
26
|
a1i |
|- ( A e. CC -> 0 e. ( 0 [,) +oo ) ) |
| 28 |
|
eqeq2 |
|- ( ( exp ` ( A x. 1 ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) -> ( if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. 1 ) ) <-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) ) |
| 29 |
|
eqeq2 |
|- ( ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) -> ( if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) <-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) ) |
| 30 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
| 31 |
|
0cnd |
|- ( A e. CC -> 0 e. CC ) |
| 32 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
| 33 |
|
peano2re |
|- ( ( abs ` A ) e. RR -> ( ( abs ` A ) + 1 ) e. RR ) |
| 34 |
32 33
|
syl |
|- ( A e. CC -> ( ( abs ` A ) + 1 ) e. RR ) |
| 35 |
|
0red |
|- ( A e. CC -> 0 e. RR ) |
| 36 |
|
absge0 |
|- ( A e. CC -> 0 <_ ( abs ` A ) ) |
| 37 |
32
|
ltp1d |
|- ( A e. CC -> ( abs ` A ) < ( ( abs ` A ) + 1 ) ) |
| 38 |
35 32 34 36 37
|
lelttrd |
|- ( A e. CC -> 0 < ( ( abs ` A ) + 1 ) ) |
| 39 |
34 38
|
elrpd |
|- ( A e. CC -> ( ( abs ` A ) + 1 ) e. RR+ ) |
| 40 |
39
|
rpreccld |
|- ( A e. CC -> ( 1 / ( ( abs ` A ) + 1 ) ) e. RR+ ) |
| 41 |
40
|
rpxrd |
|- ( A e. CC -> ( 1 / ( ( abs ` A ) + 1 ) ) e. RR* ) |
| 42 |
|
blssm |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ ( 1 / ( ( abs ` A ) + 1 ) ) e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) C_ CC ) |
| 43 |
30 31 41 42
|
mp3an2i |
|- ( A e. CC -> ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) C_ CC ) |
| 44 |
1 43
|
eqsstrid |
|- ( A e. CC -> S C_ CC ) |
| 45 |
44
|
sselda |
|- ( ( A e. CC /\ x e. S ) -> x e. CC ) |
| 46 |
|
mul0or |
|- ( ( A e. CC /\ x e. CC ) -> ( ( A x. x ) = 0 <-> ( A = 0 \/ x = 0 ) ) ) |
| 47 |
45 46
|
syldan |
|- ( ( A e. CC /\ x e. S ) -> ( ( A x. x ) = 0 <-> ( A = 0 \/ x = 0 ) ) ) |
| 48 |
8 12
|
reccld |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( 1 / x ) e. CC ) |
| 49 |
45 48
|
syldanl |
|- ( ( ( A e. CC /\ x e. S ) /\ -. x = 0 ) -> ( 1 / x ) e. CC ) |
| 50 |
49
|
adantlr |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( 1 / x ) e. CC ) |
| 51 |
50
|
1cxpd |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( 1 ^c ( 1 / x ) ) = 1 ) |
| 52 |
|
simplr |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> A = 0 ) |
| 53 |
52
|
oveq1d |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( A x. x ) = ( 0 x. x ) ) |
| 54 |
45
|
ad2antrr |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> x e. CC ) |
| 55 |
54
|
mul02d |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( 0 x. x ) = 0 ) |
| 56 |
53 55
|
eqtrd |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( A x. x ) = 0 ) |
| 57 |
56
|
oveq2d |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( 1 + ( A x. x ) ) = ( 1 + 0 ) ) |
| 58 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
| 59 |
57 58
|
eqtrdi |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( 1 + ( A x. x ) ) = 1 ) |
| 60 |
59
|
oveq1d |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) = ( 1 ^c ( 1 / x ) ) ) |
| 61 |
52
|
fveq2d |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( exp ` A ) = ( exp ` 0 ) ) |
| 62 |
|
ef0 |
|- ( exp ` 0 ) = 1 |
| 63 |
61 62
|
eqtrdi |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( exp ` A ) = 1 ) |
| 64 |
51 60 63
|
3eqtr4d |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) = ( exp ` A ) ) |
| 65 |
64
|
ifeq2da |
|- ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = if ( x = 0 , ( exp ` A ) , ( exp ` A ) ) ) |
| 66 |
|
ifid |
|- if ( x = 0 , ( exp ` A ) , ( exp ` A ) ) = ( exp ` A ) |
| 67 |
65 66
|
eqtrdi |
|- ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` A ) ) |
| 68 |
|
iftrue |
|- ( x = 0 -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` A ) ) |
| 69 |
68
|
adantl |
|- ( ( ( A e. CC /\ x e. S ) /\ x = 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` A ) ) |
| 70 |
67 69
|
jaodan |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A = 0 \/ x = 0 ) ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` A ) ) |
| 71 |
|
mulrid |
|- ( A e. CC -> ( A x. 1 ) = A ) |
| 72 |
71
|
ad2antrr |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A = 0 \/ x = 0 ) ) -> ( A x. 1 ) = A ) |
| 73 |
72
|
fveq2d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A = 0 \/ x = 0 ) ) -> ( exp ` ( A x. 1 ) ) = ( exp ` A ) ) |
| 74 |
70 73
|
eqtr4d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A = 0 \/ x = 0 ) ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. 1 ) ) ) |
| 75 |
47 74
|
sylbida |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A x. x ) = 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. 1 ) ) ) |
| 76 |
|
mulne0b |
|- ( ( A e. CC /\ x e. CC ) -> ( ( A =/= 0 /\ x =/= 0 ) <-> ( A x. x ) =/= 0 ) ) |
| 77 |
45 76
|
syldan |
|- ( ( A e. CC /\ x e. S ) -> ( ( A =/= 0 /\ x =/= 0 ) <-> ( A x. x ) =/= 0 ) ) |
| 78 |
|
df-ne |
|- ( ( A x. x ) =/= 0 <-> -. ( A x. x ) = 0 ) |
| 79 |
77 78
|
bitrdi |
|- ( ( A e. CC /\ x e. S ) -> ( ( A =/= 0 /\ x =/= 0 ) <-> -. ( A x. x ) = 0 ) ) |
| 80 |
|
simprr |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> x =/= 0 ) |
| 81 |
80
|
neneqd |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> -. x = 0 ) |
| 82 |
81
|
iffalsed |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) |
| 83 |
|
ax-1cn |
|- 1 e. CC |
| 84 |
45 14
|
syldan |
|- ( ( A e. CC /\ x e. S ) -> ( A x. x ) e. CC ) |
| 85 |
|
addcl |
|- ( ( 1 e. CC /\ ( A x. x ) e. CC ) -> ( 1 + ( A x. x ) ) e. CC ) |
| 86 |
83 84 85
|
sylancr |
|- ( ( A e. CC /\ x e. S ) -> ( 1 + ( A x. x ) ) e. CC ) |
| 87 |
86
|
adantr |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( 1 + ( A x. x ) ) e. CC ) |
| 88 |
|
eqid |
|- ( 1 ( ball ` ( abs o. - ) ) 1 ) = ( 1 ( ball ` ( abs o. - ) ) 1 ) |
| 89 |
88
|
dvlog2lem |
|- ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ ( CC \ ( -oo (,] 0 ) ) |
| 90 |
|
eqid |
|- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
| 91 |
90
|
logdmss |
|- ( CC \ ( -oo (,] 0 ) ) C_ ( CC \ { 0 } ) |
| 92 |
89 91
|
sstri |
|- ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ ( CC \ { 0 } ) |
| 93 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
| 94 |
93
|
cnmetdval |
|- ( ( ( 1 + ( A x. x ) ) e. CC /\ 1 e. CC ) -> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) = ( abs ` ( ( 1 + ( A x. x ) ) - 1 ) ) ) |
| 95 |
86 83 94
|
sylancl |
|- ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) = ( abs ` ( ( 1 + ( A x. x ) ) - 1 ) ) ) |
| 96 |
|
pncan2 |
|- ( ( 1 e. CC /\ ( A x. x ) e. CC ) -> ( ( 1 + ( A x. x ) ) - 1 ) = ( A x. x ) ) |
| 97 |
83 84 96
|
sylancr |
|- ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) - 1 ) = ( A x. x ) ) |
| 98 |
97
|
fveq2d |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` ( ( 1 + ( A x. x ) ) - 1 ) ) = ( abs ` ( A x. x ) ) ) |
| 99 |
95 98
|
eqtrd |
|- ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) = ( abs ` ( A x. x ) ) ) |
| 100 |
84
|
abscld |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` ( A x. x ) ) e. RR ) |
| 101 |
34
|
adantr |
|- ( ( A e. CC /\ x e. S ) -> ( ( abs ` A ) + 1 ) e. RR ) |
| 102 |
45
|
abscld |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` x ) e. RR ) |
| 103 |
101 102
|
remulcld |
|- ( ( A e. CC /\ x e. S ) -> ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) e. RR ) |
| 104 |
|
1red |
|- ( ( A e. CC /\ x e. S ) -> 1 e. RR ) |
| 105 |
|
absmul |
|- ( ( A e. CC /\ x e. CC ) -> ( abs ` ( A x. x ) ) = ( ( abs ` A ) x. ( abs ` x ) ) ) |
| 106 |
45 105
|
syldan |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` ( A x. x ) ) = ( ( abs ` A ) x. ( abs ` x ) ) ) |
| 107 |
32
|
adantr |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` A ) e. RR ) |
| 108 |
107 33
|
syl |
|- ( ( A e. CC /\ x e. S ) -> ( ( abs ` A ) + 1 ) e. RR ) |
| 109 |
45
|
absge0d |
|- ( ( A e. CC /\ x e. S ) -> 0 <_ ( abs ` x ) ) |
| 110 |
107
|
lep1d |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` A ) <_ ( ( abs ` A ) + 1 ) ) |
| 111 |
107 108 102 109 110
|
lemul1ad |
|- ( ( A e. CC /\ x e. S ) -> ( ( abs ` A ) x. ( abs ` x ) ) <_ ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) ) |
| 112 |
106 111
|
eqbrtrd |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` ( A x. x ) ) <_ ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) ) |
| 113 |
|
0cn |
|- 0 e. CC |
| 114 |
93
|
cnmetdval |
|- ( ( x e. CC /\ 0 e. CC ) -> ( x ( abs o. - ) 0 ) = ( abs ` ( x - 0 ) ) ) |
| 115 |
45 113 114
|
sylancl |
|- ( ( A e. CC /\ x e. S ) -> ( x ( abs o. - ) 0 ) = ( abs ` ( x - 0 ) ) ) |
| 116 |
45
|
subid1d |
|- ( ( A e. CC /\ x e. S ) -> ( x - 0 ) = x ) |
| 117 |
116
|
fveq2d |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` ( x - 0 ) ) = ( abs ` x ) ) |
| 118 |
115 117
|
eqtrd |
|- ( ( A e. CC /\ x e. S ) -> ( x ( abs o. - ) 0 ) = ( abs ` x ) ) |
| 119 |
|
simpr |
|- ( ( A e. CC /\ x e. S ) -> x e. S ) |
| 120 |
119 1
|
eleqtrdi |
|- ( ( A e. CC /\ x e. S ) -> x e. ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) ) |
| 121 |
30
|
a1i |
|- ( ( A e. CC /\ x e. S ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 122 |
41
|
adantr |
|- ( ( A e. CC /\ x e. S ) -> ( 1 / ( ( abs ` A ) + 1 ) ) e. RR* ) |
| 123 |
|
0cnd |
|- ( ( A e. CC /\ x e. S ) -> 0 e. CC ) |
| 124 |
|
elbl3 |
|- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ ( 1 / ( ( abs ` A ) + 1 ) ) e. RR* ) /\ ( 0 e. CC /\ x e. CC ) ) -> ( x e. ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) <-> ( x ( abs o. - ) 0 ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) ) |
| 125 |
121 122 123 45 124
|
syl22anc |
|- ( ( A e. CC /\ x e. S ) -> ( x e. ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) <-> ( x ( abs o. - ) 0 ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) ) |
| 126 |
120 125
|
mpbid |
|- ( ( A e. CC /\ x e. S ) -> ( x ( abs o. - ) 0 ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) |
| 127 |
118 126
|
eqbrtrrd |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` x ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) |
| 128 |
38
|
adantr |
|- ( ( A e. CC /\ x e. S ) -> 0 < ( ( abs ` A ) + 1 ) ) |
| 129 |
|
ltmuldiv2 |
|- ( ( ( abs ` x ) e. RR /\ 1 e. RR /\ ( ( ( abs ` A ) + 1 ) e. RR /\ 0 < ( ( abs ` A ) + 1 ) ) ) -> ( ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) < 1 <-> ( abs ` x ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) ) |
| 130 |
102 104 108 128 129
|
syl112anc |
|- ( ( A e. CC /\ x e. S ) -> ( ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) < 1 <-> ( abs ` x ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) ) |
| 131 |
127 130
|
mpbird |
|- ( ( A e. CC /\ x e. S ) -> ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) < 1 ) |
| 132 |
100 103 104 112 131
|
lelttrd |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` ( A x. x ) ) < 1 ) |
| 133 |
99 132
|
eqbrtrd |
|- ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) < 1 ) |
| 134 |
|
1rp |
|- 1 e. RR+ |
| 135 |
|
rpxr |
|- ( 1 e. RR+ -> 1 e. RR* ) |
| 136 |
134 135
|
mp1i |
|- ( ( A e. CC /\ x e. S ) -> 1 e. RR* ) |
| 137 |
|
1cnd |
|- ( ( A e. CC /\ x e. S ) -> 1 e. CC ) |
| 138 |
|
elbl3 |
|- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 1 e. CC /\ ( 1 + ( A x. x ) ) e. CC ) ) -> ( ( 1 + ( A x. x ) ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) < 1 ) ) |
| 139 |
121 136 137 86 138
|
syl22anc |
|- ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) < 1 ) ) |
| 140 |
133 139
|
mpbird |
|- ( ( A e. CC /\ x e. S ) -> ( 1 + ( A x. x ) ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
| 141 |
92 140
|
sselid |
|- ( ( A e. CC /\ x e. S ) -> ( 1 + ( A x. x ) ) e. ( CC \ { 0 } ) ) |
| 142 |
|
eldifsni |
|- ( ( 1 + ( A x. x ) ) e. ( CC \ { 0 } ) -> ( 1 + ( A x. x ) ) =/= 0 ) |
| 143 |
141 142
|
syl |
|- ( ( A e. CC /\ x e. S ) -> ( 1 + ( A x. x ) ) =/= 0 ) |
| 144 |
143
|
adantr |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( 1 + ( A x. x ) ) =/= 0 ) |
| 145 |
45
|
adantr |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> x e. CC ) |
| 146 |
145 80
|
reccld |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( 1 / x ) e. CC ) |
| 147 |
87 144 146
|
cxpefd |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) = ( exp ` ( ( 1 / x ) x. ( log ` ( 1 + ( A x. x ) ) ) ) ) ) |
| 148 |
86 143
|
logcld |
|- ( ( A e. CC /\ x e. S ) -> ( log ` ( 1 + ( A x. x ) ) ) e. CC ) |
| 149 |
148
|
adantr |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( log ` ( 1 + ( A x. x ) ) ) e. CC ) |
| 150 |
146 149
|
mulcomd |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( 1 / x ) x. ( log ` ( 1 + ( A x. x ) ) ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) x. ( 1 / x ) ) ) |
| 151 |
|
simpll |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> A e. CC ) |
| 152 |
|
simprl |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> A =/= 0 ) |
| 153 |
151 152
|
dividd |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( A / A ) = 1 ) |
| 154 |
153
|
oveq1d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( A / A ) / x ) = ( 1 / x ) ) |
| 155 |
151 151 145 152 80
|
divdiv1d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( A / A ) / x ) = ( A / ( A x. x ) ) ) |
| 156 |
154 155
|
eqtr3d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( 1 / x ) = ( A / ( A x. x ) ) ) |
| 157 |
156
|
oveq2d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( log ` ( 1 + ( A x. x ) ) ) x. ( 1 / x ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) x. ( A / ( A x. x ) ) ) ) |
| 158 |
84
|
adantr |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( A x. x ) e. CC ) |
| 159 |
77
|
biimpa |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( A x. x ) =/= 0 ) |
| 160 |
149 151 158 159
|
div12d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( log ` ( 1 + ( A x. x ) ) ) x. ( A / ( A x. x ) ) ) = ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) |
| 161 |
150 157 160
|
3eqtrd |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( 1 / x ) x. ( log ` ( 1 + ( A x. x ) ) ) ) = ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) |
| 162 |
161
|
fveq2d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( exp ` ( ( 1 / x ) x. ( log ` ( 1 + ( A x. x ) ) ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
| 163 |
82 147 162
|
3eqtrd |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
| 164 |
163
|
ex |
|- ( ( A e. CC /\ x e. S ) -> ( ( A =/= 0 /\ x =/= 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) |
| 165 |
79 164
|
sylbird |
|- ( ( A e. CC /\ x e. S ) -> ( -. ( A x. x ) = 0 -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) |
| 166 |
165
|
imp |
|- ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
| 167 |
28 29 75 166
|
ifbothda |
|- ( ( A e. CC /\ x e. S ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) |
| 168 |
167
|
mpteq2dva |
|- ( A e. CC -> ( x e. S |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) = ( x e. S |-> if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) ) |
| 169 |
44
|
resmptd |
|- ( A e. CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` S ) = ( x e. S |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) ) |
| 170 |
|
1cnd |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A x. x ) = 0 ) -> 1 e. CC ) |
| 171 |
148
|
adantr |
|- ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> ( log ` ( 1 + ( A x. x ) ) ) e. CC ) |
| 172 |
84
|
adantr |
|- ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> ( A x. x ) e. CC ) |
| 173 |
|
simpr |
|- ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> -. ( A x. x ) = 0 ) |
| 174 |
173
|
neqned |
|- ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> ( A x. x ) =/= 0 ) |
| 175 |
171 172 174
|
divcld |
|- ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) e. CC ) |
| 176 |
170 175
|
ifclda |
|- ( ( A e. CC /\ x e. S ) -> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) e. CC ) |
| 177 |
|
eqidd |
|- ( A e. CC -> ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) = ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
| 178 |
|
eqidd |
|- ( A e. CC -> ( y e. CC |-> ( exp ` ( A x. y ) ) ) = ( y e. CC |-> ( exp ` ( A x. y ) ) ) ) |
| 179 |
|
oveq2 |
|- ( y = if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) -> ( A x. y ) = ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
| 180 |
179
|
fveq2d |
|- ( y = if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) -> ( exp ` ( A x. y ) ) = ( exp ` ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) |
| 181 |
|
oveq2 |
|- ( if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) = 1 -> ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) = ( A x. 1 ) ) |
| 182 |
181
|
fveq2d |
|- ( if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) = 1 -> ( exp ` ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) = ( exp ` ( A x. 1 ) ) ) |
| 183 |
|
oveq2 |
|- ( if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) -> ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) = ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) |
| 184 |
183
|
fveq2d |
|- ( if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) -> ( exp ` ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
| 185 |
182 184
|
ifsb |
|- ( exp ` ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
| 186 |
180 185
|
eqtrdi |
|- ( y = if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) -> ( exp ` ( A x. y ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) |
| 187 |
176 177 178 186
|
fmptco |
|- ( A e. CC -> ( ( y e. CC |-> ( exp ` ( A x. y ) ) ) o. ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) = ( x e. S |-> if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) ) |
| 188 |
168 169 187
|
3eqtr4d |
|- ( A e. CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` S ) = ( ( y e. CC |-> ( exp ` ( A x. y ) ) ) o. ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) |
| 189 |
|
eqidd |
|- ( A e. CC -> ( x e. S |-> ( 1 + ( A x. x ) ) ) = ( x e. S |-> ( 1 + ( A x. x ) ) ) ) |
| 190 |
|
eqidd |
|- ( A e. CC -> ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) = ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) ) |
| 191 |
|
eqeq1 |
|- ( y = ( 1 + ( A x. x ) ) -> ( y = 1 <-> ( 1 + ( A x. x ) ) = 1 ) ) |
| 192 |
|
fveq2 |
|- ( y = ( 1 + ( A x. x ) ) -> ( log ` y ) = ( log ` ( 1 + ( A x. x ) ) ) ) |
| 193 |
|
oveq1 |
|- ( y = ( 1 + ( A x. x ) ) -> ( y - 1 ) = ( ( 1 + ( A x. x ) ) - 1 ) ) |
| 194 |
192 193
|
oveq12d |
|- ( y = ( 1 + ( A x. x ) ) -> ( ( log ` y ) / ( y - 1 ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) ) |
| 195 |
191 194
|
ifbieq2d |
|- ( y = ( 1 + ( A x. x ) ) -> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) = if ( ( 1 + ( A x. x ) ) = 1 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) ) ) |
| 196 |
140 189 190 195
|
fmptco |
|- ( A e. CC -> ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) o. ( x e. S |-> ( 1 + ( A x. x ) ) ) ) = ( x e. S |-> if ( ( 1 + ( A x. x ) ) = 1 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) ) ) ) |
| 197 |
58
|
eqeq2i |
|- ( ( 1 + ( A x. x ) ) = ( 1 + 0 ) <-> ( 1 + ( A x. x ) ) = 1 ) |
| 198 |
137 84 123
|
addcand |
|- ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) = ( 1 + 0 ) <-> ( A x. x ) = 0 ) ) |
| 199 |
197 198
|
bitr3id |
|- ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) = 1 <-> ( A x. x ) = 0 ) ) |
| 200 |
97
|
oveq2d |
|- ( ( A e. CC /\ x e. S ) -> ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) |
| 201 |
199 200
|
ifbieq2d |
|- ( ( A e. CC /\ x e. S ) -> if ( ( 1 + ( A x. x ) ) = 1 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) ) = if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) |
| 202 |
201
|
mpteq2dva |
|- ( A e. CC -> ( x e. S |-> if ( ( 1 + ( A x. x ) ) = 1 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) ) ) = ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
| 203 |
196 202
|
eqtrd |
|- ( A e. CC -> ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) o. ( x e. S |-> ( 1 + ( A x. x ) ) ) ) = ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
| 204 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
| 205 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 206 |
205
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 207 |
206
|
a1i |
|- ( A e. CC -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 208 |
|
1cnd |
|- ( A e. CC -> 1 e. CC ) |
| 209 |
207 207 208
|
cnmptc |
|- ( A e. CC -> ( x e. CC |-> 1 ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 210 |
|
id |
|- ( A e. CC -> A e. CC ) |
| 211 |
207 207 210
|
cnmptc |
|- ( A e. CC -> ( x e. CC |-> A ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 212 |
207
|
cnmptid |
|- ( A e. CC -> ( x e. CC |-> x ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 213 |
205
|
mpomulcn |
|- ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 214 |
213
|
a1i |
|- ( A e. CC -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 215 |
|
oveq12 |
|- ( ( u = A /\ v = x ) -> ( u x. v ) = ( A x. x ) ) |
| 216 |
207 211 212 207 207 214 215
|
cnmpt12 |
|- ( A e. CC -> ( x e. CC |-> ( A x. x ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 217 |
205
|
addcn |
|- + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 218 |
217
|
a1i |
|- ( A e. CC -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 219 |
207 209 216 218
|
cnmpt12f |
|- ( A e. CC -> ( x e. CC |-> ( 1 + ( A x. x ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 220 |
204 207 44 219
|
cnmpt1res |
|- ( A e. CC -> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) ) |
| 221 |
140
|
fmpttd |
|- ( A e. CC -> ( x e. S |-> ( 1 + ( A x. x ) ) ) : S --> ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
| 222 |
221
|
frnd |
|- ( A e. CC -> ran ( x e. S |-> ( 1 + ( A x. x ) ) ) C_ ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
| 223 |
|
difss |
|- ( CC \ { 0 } ) C_ CC |
| 224 |
92 223
|
sstri |
|- ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC |
| 225 |
224
|
a1i |
|- ( A e. CC -> ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) |
| 226 |
|
cnrest2 |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( x e. S |-> ( 1 + ( A x. x ) ) ) C_ ( 1 ( ball ` ( abs o. - ) ) 1 ) /\ ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) -> ( ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ) ) |
| 227 |
206 222 225 226
|
mp3an2i |
|- ( A e. CC -> ( ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ) ) |
| 228 |
220 227
|
mpbid |
|- ( A e. CC -> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ) |
| 229 |
|
blcntr |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ ( 1 / ( ( abs ` A ) + 1 ) ) e. RR+ ) -> 0 e. ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) ) |
| 230 |
30 31 40 229
|
mp3an2i |
|- ( A e. CC -> 0 e. ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) ) |
| 231 |
230 1
|
eleqtrrdi |
|- ( A e. CC -> 0 e. S ) |
| 232 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
| 233 |
206 44 232
|
sylancr |
|- ( A e. CC -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
| 234 |
|
toponuni |
|- ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 235 |
233 234
|
syl |
|- ( A e. CC -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 236 |
231 235
|
eleqtrd |
|- ( A e. CC -> 0 e. U. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 237 |
|
eqid |
|- U. ( ( TopOpen ` CCfld ) |`t S ) = U. ( ( TopOpen ` CCfld ) |`t S ) |
| 238 |
237
|
cncnpi |
|- ( ( ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) /\ 0 e. U. ( ( TopOpen ` CCfld ) |`t S ) ) -> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 0 ) ) |
| 239 |
228 236 238
|
syl2anc |
|- ( A e. CC -> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 0 ) ) |
| 240 |
|
cnelprrecn |
|- CC e. { RR , CC } |
| 241 |
|
logf1o |
|- log : ( CC \ { 0 } ) -1-1-onto-> ran log |
| 242 |
|
f1of |
|- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log : ( CC \ { 0 } ) --> ran log ) |
| 243 |
241 242
|
ax-mp |
|- log : ( CC \ { 0 } ) --> ran log |
| 244 |
|
logrncn |
|- ( x e. ran log -> x e. CC ) |
| 245 |
244
|
ssriv |
|- ran log C_ CC |
| 246 |
|
fss |
|- ( ( log : ( CC \ { 0 } ) --> ran log /\ ran log C_ CC ) -> log : ( CC \ { 0 } ) --> CC ) |
| 247 |
243 245 246
|
mp2an |
|- log : ( CC \ { 0 } ) --> CC |
| 248 |
|
fssres |
|- ( ( log : ( CC \ { 0 } ) --> CC /\ ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ ( CC \ { 0 } ) ) -> ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> CC ) |
| 249 |
247 92 248
|
mp2an |
|- ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> CC |
| 250 |
|
blcntr |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. CC /\ 1 e. RR+ ) -> 1 e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
| 251 |
30 83 134 250
|
mp3an |
|- 1 e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |
| 252 |
|
ovex |
|- ( 1 / y ) e. _V |
| 253 |
88
|
dvlog2 |
|- ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) = ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) |
| 254 |
252 253
|
dmmpti |
|- dom ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) = ( 1 ( ball ` ( abs o. - ) ) 1 ) |
| 255 |
251 254
|
eleqtrri |
|- 1 e. dom ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) |
| 256 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) = ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
| 257 |
253
|
fveq1i |
|- ( ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 1 ) = ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) ` 1 ) |
| 258 |
|
oveq2 |
|- ( y = 1 -> ( 1 / y ) = ( 1 / 1 ) ) |
| 259 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
| 260 |
258 259
|
eqtrdi |
|- ( y = 1 -> ( 1 / y ) = 1 ) |
| 261 |
|
eqid |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) = ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) |
| 262 |
|
1ex |
|- 1 e. _V |
| 263 |
260 261 262
|
fvmpt |
|- ( 1 e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) ` 1 ) = 1 ) |
| 264 |
251 263
|
ax-mp |
|- ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) ` 1 ) = 1 |
| 265 |
257 264
|
eqtr2i |
|- 1 = ( ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 1 ) |
| 266 |
265
|
a1i |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> 1 = ( ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 1 ) ) |
| 267 |
|
fvres |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) = ( log ` y ) ) |
| 268 |
|
fvres |
|- ( 1 e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) = ( log ` 1 ) ) |
| 269 |
251 268
|
mp1i |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) = ( log ` 1 ) ) |
| 270 |
|
log1 |
|- ( log ` 1 ) = 0 |
| 271 |
269 270
|
eqtrdi |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) = 0 ) |
| 272 |
267 271
|
oveq12d |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) - ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) ) = ( ( log ` y ) - 0 ) ) |
| 273 |
92
|
sseli |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> y e. ( CC \ { 0 } ) ) |
| 274 |
|
eldifsn |
|- ( y e. ( CC \ { 0 } ) <-> ( y e. CC /\ y =/= 0 ) ) |
| 275 |
273 274
|
sylib |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( y e. CC /\ y =/= 0 ) ) |
| 276 |
|
logcl |
|- ( ( y e. CC /\ y =/= 0 ) -> ( log ` y ) e. CC ) |
| 277 |
275 276
|
syl |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( log ` y ) e. CC ) |
| 278 |
277
|
subid1d |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log ` y ) - 0 ) = ( log ` y ) ) |
| 279 |
272 278
|
eqtr2d |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( log ` y ) = ( ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) - ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) ) ) |
| 280 |
279
|
oveq1d |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log ` y ) / ( y - 1 ) ) = ( ( ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) - ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) ) / ( y - 1 ) ) ) |
| 281 |
266 280
|
ifeq12d |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) = if ( y = 1 , ( ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 1 ) , ( ( ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) - ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) ) / ( y - 1 ) ) ) ) |
| 282 |
281
|
mpteq2ia |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) = ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , ( ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 1 ) , ( ( ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) - ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) ) / ( y - 1 ) ) ) ) |
| 283 |
256 205 282
|
dvcnp |
|- ( ( ( CC e. { RR , CC } /\ ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> CC /\ ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) /\ 1 e. dom ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ) -> ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` 1 ) ) |
| 284 |
255 283
|
mpan2 |
|- ( ( CC e. { RR , CC } /\ ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> CC /\ ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) -> ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` 1 ) ) |
| 285 |
240 249 224 284
|
mp3an |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` 1 ) |
| 286 |
|
oveq2 |
|- ( x = 0 -> ( A x. x ) = ( A x. 0 ) ) |
| 287 |
286
|
oveq2d |
|- ( x = 0 -> ( 1 + ( A x. x ) ) = ( 1 + ( A x. 0 ) ) ) |
| 288 |
|
eqid |
|- ( x e. S |-> ( 1 + ( A x. x ) ) ) = ( x e. S |-> ( 1 + ( A x. x ) ) ) |
| 289 |
|
ovex |
|- ( 1 + ( A x. 0 ) ) e. _V |
| 290 |
287 288 289
|
fvmpt |
|- ( 0 e. S -> ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) = ( 1 + ( A x. 0 ) ) ) |
| 291 |
231 290
|
syl |
|- ( A e. CC -> ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) = ( 1 + ( A x. 0 ) ) ) |
| 292 |
|
mul01 |
|- ( A e. CC -> ( A x. 0 ) = 0 ) |
| 293 |
292
|
oveq2d |
|- ( A e. CC -> ( 1 + ( A x. 0 ) ) = ( 1 + 0 ) ) |
| 294 |
293 58
|
eqtrdi |
|- ( A e. CC -> ( 1 + ( A x. 0 ) ) = 1 ) |
| 295 |
291 294
|
eqtrd |
|- ( A e. CC -> ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) = 1 ) |
| 296 |
295
|
fveq2d |
|- ( A e. CC -> ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) ) = ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` 1 ) ) |
| 297 |
285 296
|
eleqtrrid |
|- ( A e. CC -> ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) ) ) |
| 298 |
|
cnpco |
|- ( ( ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 0 ) /\ ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) ) ) -> ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) o. ( x e. S |-> ( 1 + ( A x. x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
| 299 |
239 297 298
|
syl2anc |
|- ( A e. CC -> ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) o. ( x e. S |-> ( 1 + ( A x. x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
| 300 |
203 299
|
eqeltrrd |
|- ( A e. CC -> ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
| 301 |
207 207 210
|
cnmptc |
|- ( A e. CC -> ( y e. CC |-> A ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 302 |
207
|
cnmptid |
|- ( A e. CC -> ( y e. CC |-> y ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 303 |
|
oveq12 |
|- ( ( u = A /\ v = y ) -> ( u x. v ) = ( A x. y ) ) |
| 304 |
207 301 302 207 207 214 303
|
cnmpt12 |
|- ( A e. CC -> ( y e. CC |-> ( A x. y ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 305 |
|
efcn |
|- exp e. ( CC -cn-> CC ) |
| 306 |
205
|
cncfcn1 |
|- ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
| 307 |
305 306
|
eleqtri |
|- exp e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
| 308 |
307
|
a1i |
|- ( A e. CC -> exp e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 309 |
207 304 308
|
cnmpt11f |
|- ( A e. CC -> ( y e. CC |-> ( exp ` ( A x. y ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
| 310 |
176
|
fmpttd |
|- ( A e. CC -> ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) : S --> CC ) |
| 311 |
310 231
|
ffvelcdmd |
|- ( A e. CC -> ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ` 0 ) e. CC ) |
| 312 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
| 313 |
312
|
cncnpi |
|- ( ( ( y e. CC |-> ( exp ` ( A x. y ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) /\ ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ` 0 ) e. CC ) -> ( y e. CC |-> ( exp ` ( A x. y ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ` 0 ) ) ) |
| 314 |
309 311 313
|
syl2anc |
|- ( A e. CC -> ( y e. CC |-> ( exp ` ( A x. y ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ` 0 ) ) ) |
| 315 |
|
cnpco |
|- ( ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) /\ ( y e. CC |-> ( exp ` ( A x. y ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ` 0 ) ) ) -> ( ( y e. CC |-> ( exp ` ( A x. y ) ) ) o. ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
| 316 |
300 314 315
|
syl2anc |
|- ( A e. CC -> ( ( y e. CC |-> ( exp ` ( A x. y ) ) ) o. ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
| 317 |
188 316
|
eqeltrd |
|- ( A e. CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` S ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
| 318 |
205
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
| 319 |
318
|
a1i |
|- ( A e. CC -> ( TopOpen ` CCfld ) e. Top ) |
| 320 |
205
|
cnfldtopn |
|- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
| 321 |
320
|
blopn |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ ( 1 / ( ( abs ` A ) + 1 ) ) e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) e. ( TopOpen ` CCfld ) ) |
| 322 |
30 31 41 321
|
mp3an2i |
|- ( A e. CC -> ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) e. ( TopOpen ` CCfld ) ) |
| 323 |
1 322
|
eqeltrid |
|- ( A e. CC -> S e. ( TopOpen ` CCfld ) ) |
| 324 |
|
isopn3i |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ S e. ( TopOpen ` CCfld ) ) -> ( ( int ` ( TopOpen ` CCfld ) ) ` S ) = S ) |
| 325 |
318 323 324
|
sylancr |
|- ( A e. CC -> ( ( int ` ( TopOpen ` CCfld ) ) ` S ) = S ) |
| 326 |
231 325
|
eleqtrrd |
|- ( A e. CC -> 0 e. ( ( int ` ( TopOpen ` CCfld ) ) ` S ) ) |
| 327 |
|
efcl |
|- ( A e. CC -> ( exp ` A ) e. CC ) |
| 328 |
327
|
ad2antrr |
|- ( ( ( A e. CC /\ x e. CC ) /\ x = 0 ) -> ( exp ` A ) e. CC ) |
| 329 |
83 15 85
|
sylancr |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( 1 + ( A x. x ) ) e. CC ) |
| 330 |
329 48
|
cxpcld |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) e. CC ) |
| 331 |
328 330
|
ifclda |
|- ( ( A e. CC /\ x e. CC ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) e. CC ) |
| 332 |
331
|
fmpttd |
|- ( A e. CC -> ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) : CC --> CC ) |
| 333 |
312 312
|
cnprest |
|- ( ( ( ( TopOpen ` CCfld ) e. Top /\ S C_ CC ) /\ ( 0 e. ( ( int ` ( TopOpen ` CCfld ) ) ` S ) /\ ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) : CC --> CC ) ) -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` 0 ) <-> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` S ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) ) |
| 334 |
319 44 326 332 333
|
syl22anc |
|- ( A e. CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` 0 ) <-> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` S ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) ) |
| 335 |
317 334
|
mpbird |
|- ( A e. CC -> ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
| 336 |
312
|
cnpresti |
|- ( ( ( 0 [,) +oo ) C_ CC /\ 0 e. ( 0 [,) +oo ) /\ ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` ( 0 [,) +oo ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
| 337 |
4 27 335 336
|
mp3an2i |
|- ( A e. CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` ( 0 [,) +oo ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
| 338 |
25 337
|
eqeltrd |
|- ( A e. CC -> ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
| 339 |
|
simpl |
|- ( ( A e. CC /\ k e. RR+ ) -> A e. CC ) |
| 340 |
|
rpcn |
|- ( k e. RR+ -> k e. CC ) |
| 341 |
340
|
adantl |
|- ( ( A e. CC /\ k e. RR+ ) -> k e. CC ) |
| 342 |
|
rpne0 |
|- ( k e. RR+ -> k =/= 0 ) |
| 343 |
342
|
adantl |
|- ( ( A e. CC /\ k e. RR+ ) -> k =/= 0 ) |
| 344 |
339 341 343
|
divcld |
|- ( ( A e. CC /\ k e. RR+ ) -> ( A / k ) e. CC ) |
| 345 |
|
addcl |
|- ( ( 1 e. CC /\ ( A / k ) e. CC ) -> ( 1 + ( A / k ) ) e. CC ) |
| 346 |
83 344 345
|
sylancr |
|- ( ( A e. CC /\ k e. RR+ ) -> ( 1 + ( A / k ) ) e. CC ) |
| 347 |
346 341
|
cxpcld |
|- ( ( A e. CC /\ k e. RR+ ) -> ( ( 1 + ( A / k ) ) ^c k ) e. CC ) |
| 348 |
|
oveq2 |
|- ( k = ( 1 / x ) -> ( A / k ) = ( A / ( 1 / x ) ) ) |
| 349 |
348
|
oveq2d |
|- ( k = ( 1 / x ) -> ( 1 + ( A / k ) ) = ( 1 + ( A / ( 1 / x ) ) ) ) |
| 350 |
|
id |
|- ( k = ( 1 / x ) -> k = ( 1 / x ) ) |
| 351 |
349 350
|
oveq12d |
|- ( k = ( 1 / x ) -> ( ( 1 + ( A / k ) ) ^c k ) = ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) |
| 352 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) = ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) |
| 353 |
327 347 351 205 352
|
rlimcnp3 |
|- ( A e. CC -> ( ( k e. RR+ |-> ( ( 1 + ( A / k ) ) ^c k ) ) ~~>r ( exp ` A ) <-> ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) ) |
| 354 |
338 353
|
mpbird |
|- ( A e. CC -> ( k e. RR+ |-> ( ( 1 + ( A / k ) ) ^c k ) ) ~~>r ( exp ` A ) ) |