| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efrlim.1 |  |-  S = ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) | 
						
							| 2 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 3 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 4 | 2 3 | sstri |  |-  ( 0 [,) +oo ) C_ CC | 
						
							| 5 | 4 | sseli |  |-  ( x e. ( 0 [,) +oo ) -> x e. CC ) | 
						
							| 6 |  | simpll |  |-  ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> A e. CC ) | 
						
							| 7 |  | 1cnd |  |-  ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> 1 e. CC ) | 
						
							| 8 |  | simplr |  |-  ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> x e. CC ) | 
						
							| 9 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 10 | 9 | a1i |  |-  ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> 1 =/= 0 ) | 
						
							| 11 |  | simpr |  |-  ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> -. x = 0 ) | 
						
							| 12 | 11 | neqned |  |-  ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> x =/= 0 ) | 
						
							| 13 | 6 7 8 10 12 | divdiv2d |  |-  ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( A / ( 1 / x ) ) = ( ( A x. x ) / 1 ) ) | 
						
							| 14 |  | mulcl |  |-  ( ( A e. CC /\ x e. CC ) -> ( A x. x ) e. CC ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( A x. x ) e. CC ) | 
						
							| 16 | 15 | div1d |  |-  ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( ( A x. x ) / 1 ) = ( A x. x ) ) | 
						
							| 17 | 13 16 | eqtrd |  |-  ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( A / ( 1 / x ) ) = ( A x. x ) ) | 
						
							| 18 | 17 | oveq2d |  |-  ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( 1 + ( A / ( 1 / x ) ) ) = ( 1 + ( A x. x ) ) ) | 
						
							| 19 | 18 | oveq1d |  |-  ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) = ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) | 
						
							| 20 | 19 | ifeq2da |  |-  ( ( A e. CC /\ x e. CC ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) = if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) | 
						
							| 21 | 5 20 | sylan2 |  |-  ( ( A e. CC /\ x e. ( 0 [,) +oo ) ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) = if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) | 
						
							| 22 | 21 | mpteq2dva |  |-  ( A e. CC -> ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) ) = ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) ) | 
						
							| 23 |  | resmpt |  |-  ( ( 0 [,) +oo ) C_ CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` ( 0 [,) +oo ) ) = ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) ) | 
						
							| 24 | 4 23 | ax-mp |  |-  ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` ( 0 [,) +oo ) ) = ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) | 
						
							| 25 | 22 24 | eqtr4di |  |-  ( A e. CC -> ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) ) = ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` ( 0 [,) +oo ) ) ) | 
						
							| 26 |  | 0e0icopnf |  |-  0 e. ( 0 [,) +oo ) | 
						
							| 27 | 26 | a1i |  |-  ( A e. CC -> 0 e. ( 0 [,) +oo ) ) | 
						
							| 28 |  | eqeq2 |  |-  ( ( exp ` ( A x. 1 ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) -> ( if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. 1 ) ) <-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) ) | 
						
							| 29 |  | eqeq2 |  |-  ( ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) -> ( if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) <-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) ) | 
						
							| 30 |  | cnxmet |  |-  ( abs o. - ) e. ( *Met ` CC ) | 
						
							| 31 |  | 0cnd |  |-  ( A e. CC -> 0 e. CC ) | 
						
							| 32 |  | abscl |  |-  ( A e. CC -> ( abs ` A ) e. RR ) | 
						
							| 33 |  | peano2re |  |-  ( ( abs ` A ) e. RR -> ( ( abs ` A ) + 1 ) e. RR ) | 
						
							| 34 | 32 33 | syl |  |-  ( A e. CC -> ( ( abs ` A ) + 1 ) e. RR ) | 
						
							| 35 |  | 0red |  |-  ( A e. CC -> 0 e. RR ) | 
						
							| 36 |  | absge0 |  |-  ( A e. CC -> 0 <_ ( abs ` A ) ) | 
						
							| 37 | 32 | ltp1d |  |-  ( A e. CC -> ( abs ` A ) < ( ( abs ` A ) + 1 ) ) | 
						
							| 38 | 35 32 34 36 37 | lelttrd |  |-  ( A e. CC -> 0 < ( ( abs ` A ) + 1 ) ) | 
						
							| 39 | 34 38 | elrpd |  |-  ( A e. CC -> ( ( abs ` A ) + 1 ) e. RR+ ) | 
						
							| 40 | 39 | rpreccld |  |-  ( A e. CC -> ( 1 / ( ( abs ` A ) + 1 ) ) e. RR+ ) | 
						
							| 41 | 40 | rpxrd |  |-  ( A e. CC -> ( 1 / ( ( abs ` A ) + 1 ) ) e. RR* ) | 
						
							| 42 |  | blssm |  |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ ( 1 / ( ( abs ` A ) + 1 ) ) e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) C_ CC ) | 
						
							| 43 | 30 31 41 42 | mp3an2i |  |-  ( A e. CC -> ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) C_ CC ) | 
						
							| 44 | 1 43 | eqsstrid |  |-  ( A e. CC -> S C_ CC ) | 
						
							| 45 | 44 | sselda |  |-  ( ( A e. CC /\ x e. S ) -> x e. CC ) | 
						
							| 46 |  | mul0or |  |-  ( ( A e. CC /\ x e. CC ) -> ( ( A x. x ) = 0 <-> ( A = 0 \/ x = 0 ) ) ) | 
						
							| 47 | 45 46 | syldan |  |-  ( ( A e. CC /\ x e. S ) -> ( ( A x. x ) = 0 <-> ( A = 0 \/ x = 0 ) ) ) | 
						
							| 48 | 8 12 | reccld |  |-  ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( 1 / x ) e. CC ) | 
						
							| 49 | 45 48 | syldanl |  |-  ( ( ( A e. CC /\ x e. S ) /\ -. x = 0 ) -> ( 1 / x ) e. CC ) | 
						
							| 50 | 49 | adantlr |  |-  ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( 1 / x ) e. CC ) | 
						
							| 51 | 50 | 1cxpd |  |-  ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( 1 ^c ( 1 / x ) ) = 1 ) | 
						
							| 52 |  | simplr |  |-  ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> A = 0 ) | 
						
							| 53 | 52 | oveq1d |  |-  ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( A x. x ) = ( 0 x. x ) ) | 
						
							| 54 | 45 | ad2antrr |  |-  ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> x e. CC ) | 
						
							| 55 | 54 | mul02d |  |-  ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( 0 x. x ) = 0 ) | 
						
							| 56 | 53 55 | eqtrd |  |-  ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( A x. x ) = 0 ) | 
						
							| 57 | 56 | oveq2d |  |-  ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( 1 + ( A x. x ) ) = ( 1 + 0 ) ) | 
						
							| 58 |  | 1p0e1 |  |-  ( 1 + 0 ) = 1 | 
						
							| 59 | 57 58 | eqtrdi |  |-  ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( 1 + ( A x. x ) ) = 1 ) | 
						
							| 60 | 59 | oveq1d |  |-  ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) = ( 1 ^c ( 1 / x ) ) ) | 
						
							| 61 | 52 | fveq2d |  |-  ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( exp ` A ) = ( exp ` 0 ) ) | 
						
							| 62 |  | ef0 |  |-  ( exp ` 0 ) = 1 | 
						
							| 63 | 61 62 | eqtrdi |  |-  ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( exp ` A ) = 1 ) | 
						
							| 64 | 51 60 63 | 3eqtr4d |  |-  ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) = ( exp ` A ) ) | 
						
							| 65 | 64 | ifeq2da |  |-  ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = if ( x = 0 , ( exp ` A ) , ( exp ` A ) ) ) | 
						
							| 66 |  | ifid |  |-  if ( x = 0 , ( exp ` A ) , ( exp ` A ) ) = ( exp ` A ) | 
						
							| 67 | 65 66 | eqtrdi |  |-  ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` A ) ) | 
						
							| 68 |  | iftrue |  |-  ( x = 0 -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` A ) ) | 
						
							| 69 | 68 | adantl |  |-  ( ( ( A e. CC /\ x e. S ) /\ x = 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` A ) ) | 
						
							| 70 | 67 69 | jaodan |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A = 0 \/ x = 0 ) ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` A ) ) | 
						
							| 71 |  | mulrid |  |-  ( A e. CC -> ( A x. 1 ) = A ) | 
						
							| 72 | 71 | ad2antrr |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A = 0 \/ x = 0 ) ) -> ( A x. 1 ) = A ) | 
						
							| 73 | 72 | fveq2d |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A = 0 \/ x = 0 ) ) -> ( exp ` ( A x. 1 ) ) = ( exp ` A ) ) | 
						
							| 74 | 70 73 | eqtr4d |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A = 0 \/ x = 0 ) ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. 1 ) ) ) | 
						
							| 75 | 47 74 | sylbida |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A x. x ) = 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. 1 ) ) ) | 
						
							| 76 |  | mulne0b |  |-  ( ( A e. CC /\ x e. CC ) -> ( ( A =/= 0 /\ x =/= 0 ) <-> ( A x. x ) =/= 0 ) ) | 
						
							| 77 | 45 76 | syldan |  |-  ( ( A e. CC /\ x e. S ) -> ( ( A =/= 0 /\ x =/= 0 ) <-> ( A x. x ) =/= 0 ) ) | 
						
							| 78 |  | df-ne |  |-  ( ( A x. x ) =/= 0 <-> -. ( A x. x ) = 0 ) | 
						
							| 79 | 77 78 | bitrdi |  |-  ( ( A e. CC /\ x e. S ) -> ( ( A =/= 0 /\ x =/= 0 ) <-> -. ( A x. x ) = 0 ) ) | 
						
							| 80 |  | simprr |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> x =/= 0 ) | 
						
							| 81 | 80 | neneqd |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> -. x = 0 ) | 
						
							| 82 | 81 | iffalsed |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) | 
						
							| 83 |  | ax-1cn |  |-  1 e. CC | 
						
							| 84 | 45 14 | syldan |  |-  ( ( A e. CC /\ x e. S ) -> ( A x. x ) e. CC ) | 
						
							| 85 |  | addcl |  |-  ( ( 1 e. CC /\ ( A x. x ) e. CC ) -> ( 1 + ( A x. x ) ) e. CC ) | 
						
							| 86 | 83 84 85 | sylancr |  |-  ( ( A e. CC /\ x e. S ) -> ( 1 + ( A x. x ) ) e. CC ) | 
						
							| 87 | 86 | adantr |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( 1 + ( A x. x ) ) e. CC ) | 
						
							| 88 |  | eqid |  |-  ( 1 ( ball ` ( abs o. - ) ) 1 ) = ( 1 ( ball ` ( abs o. - ) ) 1 ) | 
						
							| 89 | 88 | dvlog2lem |  |-  ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ ( CC \ ( -oo (,] 0 ) ) | 
						
							| 90 |  | eqid |  |-  ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) | 
						
							| 91 | 90 | logdmss |  |-  ( CC \ ( -oo (,] 0 ) ) C_ ( CC \ { 0 } ) | 
						
							| 92 | 89 91 | sstri |  |-  ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ ( CC \ { 0 } ) | 
						
							| 93 |  | eqid |  |-  ( abs o. - ) = ( abs o. - ) | 
						
							| 94 | 93 | cnmetdval |  |-  ( ( ( 1 + ( A x. x ) ) e. CC /\ 1 e. CC ) -> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) = ( abs ` ( ( 1 + ( A x. x ) ) - 1 ) ) ) | 
						
							| 95 | 86 83 94 | sylancl |  |-  ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) = ( abs ` ( ( 1 + ( A x. x ) ) - 1 ) ) ) | 
						
							| 96 |  | pncan2 |  |-  ( ( 1 e. CC /\ ( A x. x ) e. CC ) -> ( ( 1 + ( A x. x ) ) - 1 ) = ( A x. x ) ) | 
						
							| 97 | 83 84 96 | sylancr |  |-  ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) - 1 ) = ( A x. x ) ) | 
						
							| 98 | 97 | fveq2d |  |-  ( ( A e. CC /\ x e. S ) -> ( abs ` ( ( 1 + ( A x. x ) ) - 1 ) ) = ( abs ` ( A x. x ) ) ) | 
						
							| 99 | 95 98 | eqtrd |  |-  ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) = ( abs ` ( A x. x ) ) ) | 
						
							| 100 | 84 | abscld |  |-  ( ( A e. CC /\ x e. S ) -> ( abs ` ( A x. x ) ) e. RR ) | 
						
							| 101 | 34 | adantr |  |-  ( ( A e. CC /\ x e. S ) -> ( ( abs ` A ) + 1 ) e. RR ) | 
						
							| 102 | 45 | abscld |  |-  ( ( A e. CC /\ x e. S ) -> ( abs ` x ) e. RR ) | 
						
							| 103 | 101 102 | remulcld |  |-  ( ( A e. CC /\ x e. S ) -> ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) e. RR ) | 
						
							| 104 |  | 1red |  |-  ( ( A e. CC /\ x e. S ) -> 1 e. RR ) | 
						
							| 105 |  | absmul |  |-  ( ( A e. CC /\ x e. CC ) -> ( abs ` ( A x. x ) ) = ( ( abs ` A ) x. ( abs ` x ) ) ) | 
						
							| 106 | 45 105 | syldan |  |-  ( ( A e. CC /\ x e. S ) -> ( abs ` ( A x. x ) ) = ( ( abs ` A ) x. ( abs ` x ) ) ) | 
						
							| 107 | 32 | adantr |  |-  ( ( A e. CC /\ x e. S ) -> ( abs ` A ) e. RR ) | 
						
							| 108 | 107 33 | syl |  |-  ( ( A e. CC /\ x e. S ) -> ( ( abs ` A ) + 1 ) e. RR ) | 
						
							| 109 | 45 | absge0d |  |-  ( ( A e. CC /\ x e. S ) -> 0 <_ ( abs ` x ) ) | 
						
							| 110 | 107 | lep1d |  |-  ( ( A e. CC /\ x e. S ) -> ( abs ` A ) <_ ( ( abs ` A ) + 1 ) ) | 
						
							| 111 | 107 108 102 109 110 | lemul1ad |  |-  ( ( A e. CC /\ x e. S ) -> ( ( abs ` A ) x. ( abs ` x ) ) <_ ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) ) | 
						
							| 112 | 106 111 | eqbrtrd |  |-  ( ( A e. CC /\ x e. S ) -> ( abs ` ( A x. x ) ) <_ ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) ) | 
						
							| 113 |  | 0cn |  |-  0 e. CC | 
						
							| 114 | 93 | cnmetdval |  |-  ( ( x e. CC /\ 0 e. CC ) -> ( x ( abs o. - ) 0 ) = ( abs ` ( x - 0 ) ) ) | 
						
							| 115 | 45 113 114 | sylancl |  |-  ( ( A e. CC /\ x e. S ) -> ( x ( abs o. - ) 0 ) = ( abs ` ( x - 0 ) ) ) | 
						
							| 116 | 45 | subid1d |  |-  ( ( A e. CC /\ x e. S ) -> ( x - 0 ) = x ) | 
						
							| 117 | 116 | fveq2d |  |-  ( ( A e. CC /\ x e. S ) -> ( abs ` ( x - 0 ) ) = ( abs ` x ) ) | 
						
							| 118 | 115 117 | eqtrd |  |-  ( ( A e. CC /\ x e. S ) -> ( x ( abs o. - ) 0 ) = ( abs ` x ) ) | 
						
							| 119 |  | simpr |  |-  ( ( A e. CC /\ x e. S ) -> x e. S ) | 
						
							| 120 | 119 1 | eleqtrdi |  |-  ( ( A e. CC /\ x e. S ) -> x e. ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) ) | 
						
							| 121 | 30 | a1i |  |-  ( ( A e. CC /\ x e. S ) -> ( abs o. - ) e. ( *Met ` CC ) ) | 
						
							| 122 | 41 | adantr |  |-  ( ( A e. CC /\ x e. S ) -> ( 1 / ( ( abs ` A ) + 1 ) ) e. RR* ) | 
						
							| 123 |  | 0cnd |  |-  ( ( A e. CC /\ x e. S ) -> 0 e. CC ) | 
						
							| 124 |  | elbl3 |  |-  ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ ( 1 / ( ( abs ` A ) + 1 ) ) e. RR* ) /\ ( 0 e. CC /\ x e. CC ) ) -> ( x e. ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) <-> ( x ( abs o. - ) 0 ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) ) | 
						
							| 125 | 121 122 123 45 124 | syl22anc |  |-  ( ( A e. CC /\ x e. S ) -> ( x e. ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) <-> ( x ( abs o. - ) 0 ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) ) | 
						
							| 126 | 120 125 | mpbid |  |-  ( ( A e. CC /\ x e. S ) -> ( x ( abs o. - ) 0 ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) | 
						
							| 127 | 118 126 | eqbrtrrd |  |-  ( ( A e. CC /\ x e. S ) -> ( abs ` x ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) | 
						
							| 128 | 38 | adantr |  |-  ( ( A e. CC /\ x e. S ) -> 0 < ( ( abs ` A ) + 1 ) ) | 
						
							| 129 |  | ltmuldiv2 |  |-  ( ( ( abs ` x ) e. RR /\ 1 e. RR /\ ( ( ( abs ` A ) + 1 ) e. RR /\ 0 < ( ( abs ` A ) + 1 ) ) ) -> ( ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) < 1 <-> ( abs ` x ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) ) | 
						
							| 130 | 102 104 108 128 129 | syl112anc |  |-  ( ( A e. CC /\ x e. S ) -> ( ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) < 1 <-> ( abs ` x ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) ) | 
						
							| 131 | 127 130 | mpbird |  |-  ( ( A e. CC /\ x e. S ) -> ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) < 1 ) | 
						
							| 132 | 100 103 104 112 131 | lelttrd |  |-  ( ( A e. CC /\ x e. S ) -> ( abs ` ( A x. x ) ) < 1 ) | 
						
							| 133 | 99 132 | eqbrtrd |  |-  ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) < 1 ) | 
						
							| 134 |  | 1rp |  |-  1 e. RR+ | 
						
							| 135 |  | rpxr |  |-  ( 1 e. RR+ -> 1 e. RR* ) | 
						
							| 136 | 134 135 | mp1i |  |-  ( ( A e. CC /\ x e. S ) -> 1 e. RR* ) | 
						
							| 137 |  | 1cnd |  |-  ( ( A e. CC /\ x e. S ) -> 1 e. CC ) | 
						
							| 138 |  | elbl3 |  |-  ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 1 e. CC /\ ( 1 + ( A x. x ) ) e. CC ) ) -> ( ( 1 + ( A x. x ) ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) < 1 ) ) | 
						
							| 139 | 121 136 137 86 138 | syl22anc |  |-  ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) < 1 ) ) | 
						
							| 140 | 133 139 | mpbird |  |-  ( ( A e. CC /\ x e. S ) -> ( 1 + ( A x. x ) ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) | 
						
							| 141 | 92 140 | sselid |  |-  ( ( A e. CC /\ x e. S ) -> ( 1 + ( A x. x ) ) e. ( CC \ { 0 } ) ) | 
						
							| 142 |  | eldifsni |  |-  ( ( 1 + ( A x. x ) ) e. ( CC \ { 0 } ) -> ( 1 + ( A x. x ) ) =/= 0 ) | 
						
							| 143 | 141 142 | syl |  |-  ( ( A e. CC /\ x e. S ) -> ( 1 + ( A x. x ) ) =/= 0 ) | 
						
							| 144 | 143 | adantr |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( 1 + ( A x. x ) ) =/= 0 ) | 
						
							| 145 | 45 | adantr |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> x e. CC ) | 
						
							| 146 | 145 80 | reccld |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( 1 / x ) e. CC ) | 
						
							| 147 | 87 144 146 | cxpefd |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) = ( exp ` ( ( 1 / x ) x. ( log ` ( 1 + ( A x. x ) ) ) ) ) ) | 
						
							| 148 | 86 143 | logcld |  |-  ( ( A e. CC /\ x e. S ) -> ( log ` ( 1 + ( A x. x ) ) ) e. CC ) | 
						
							| 149 | 148 | adantr |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( log ` ( 1 + ( A x. x ) ) ) e. CC ) | 
						
							| 150 | 146 149 | mulcomd |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( 1 / x ) x. ( log ` ( 1 + ( A x. x ) ) ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) x. ( 1 / x ) ) ) | 
						
							| 151 |  | simpll |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> A e. CC ) | 
						
							| 152 |  | simprl |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> A =/= 0 ) | 
						
							| 153 | 151 152 | dividd |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( A / A ) = 1 ) | 
						
							| 154 | 153 | oveq1d |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( A / A ) / x ) = ( 1 / x ) ) | 
						
							| 155 | 151 151 145 152 80 | divdiv1d |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( A / A ) / x ) = ( A / ( A x. x ) ) ) | 
						
							| 156 | 154 155 | eqtr3d |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( 1 / x ) = ( A / ( A x. x ) ) ) | 
						
							| 157 | 156 | oveq2d |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( log ` ( 1 + ( A x. x ) ) ) x. ( 1 / x ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) x. ( A / ( A x. x ) ) ) ) | 
						
							| 158 | 84 | adantr |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( A x. x ) e. CC ) | 
						
							| 159 | 77 | biimpa |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( A x. x ) =/= 0 ) | 
						
							| 160 | 149 151 158 159 | div12d |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( log ` ( 1 + ( A x. x ) ) ) x. ( A / ( A x. x ) ) ) = ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) | 
						
							| 161 | 150 157 160 | 3eqtrd |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( 1 / x ) x. ( log ` ( 1 + ( A x. x ) ) ) ) = ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) | 
						
							| 162 | 161 | fveq2d |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( exp ` ( ( 1 / x ) x. ( log ` ( 1 + ( A x. x ) ) ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) | 
						
							| 163 | 82 147 162 | 3eqtrd |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) | 
						
							| 164 | 163 | ex |  |-  ( ( A e. CC /\ x e. S ) -> ( ( A =/= 0 /\ x =/= 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) | 
						
							| 165 | 79 164 | sylbird |  |-  ( ( A e. CC /\ x e. S ) -> ( -. ( A x. x ) = 0 -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) | 
						
							| 166 | 165 | imp |  |-  ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) | 
						
							| 167 | 28 29 75 166 | ifbothda |  |-  ( ( A e. CC /\ x e. S ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) | 
						
							| 168 | 167 | mpteq2dva |  |-  ( A e. CC -> ( x e. S |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) = ( x e. S |-> if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) ) | 
						
							| 169 | 44 | resmptd |  |-  ( A e. CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` S ) = ( x e. S |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) ) | 
						
							| 170 |  | 1cnd |  |-  ( ( ( A e. CC /\ x e. S ) /\ ( A x. x ) = 0 ) -> 1 e. CC ) | 
						
							| 171 | 148 | adantr |  |-  ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> ( log ` ( 1 + ( A x. x ) ) ) e. CC ) | 
						
							| 172 | 84 | adantr |  |-  ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> ( A x. x ) e. CC ) | 
						
							| 173 |  | simpr |  |-  ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> -. ( A x. x ) = 0 ) | 
						
							| 174 | 173 | neqned |  |-  ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> ( A x. x ) =/= 0 ) | 
						
							| 175 | 171 172 174 | divcld |  |-  ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) e. CC ) | 
						
							| 176 | 170 175 | ifclda |  |-  ( ( A e. CC /\ x e. S ) -> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) e. CC ) | 
						
							| 177 |  | eqidd |  |-  ( A e. CC -> ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) = ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) | 
						
							| 178 |  | eqidd |  |-  ( A e. CC -> ( y e. CC |-> ( exp ` ( A x. y ) ) ) = ( y e. CC |-> ( exp ` ( A x. y ) ) ) ) | 
						
							| 179 |  | oveq2 |  |-  ( y = if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) -> ( A x. y ) = ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) | 
						
							| 180 | 179 | fveq2d |  |-  ( y = if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) -> ( exp ` ( A x. y ) ) = ( exp ` ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) | 
						
							| 181 |  | oveq2 |  |-  ( if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) = 1 -> ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) = ( A x. 1 ) ) | 
						
							| 182 | 181 | fveq2d |  |-  ( if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) = 1 -> ( exp ` ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) = ( exp ` ( A x. 1 ) ) ) | 
						
							| 183 |  | oveq2 |  |-  ( if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) -> ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) = ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) | 
						
							| 184 | 183 | fveq2d |  |-  ( if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) -> ( exp ` ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) | 
						
							| 185 | 182 184 | ifsb |  |-  ( exp ` ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) | 
						
							| 186 | 180 185 | eqtrdi |  |-  ( y = if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) -> ( exp ` ( A x. y ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) | 
						
							| 187 | 176 177 178 186 | fmptco |  |-  ( A e. CC -> ( ( y e. CC |-> ( exp ` ( A x. y ) ) ) o. ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) = ( x e. S |-> if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) ) | 
						
							| 188 | 168 169 187 | 3eqtr4d |  |-  ( A e. CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` S ) = ( ( y e. CC |-> ( exp ` ( A x. y ) ) ) o. ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) | 
						
							| 189 |  | eqidd |  |-  ( A e. CC -> ( x e. S |-> ( 1 + ( A x. x ) ) ) = ( x e. S |-> ( 1 + ( A x. x ) ) ) ) | 
						
							| 190 |  | eqidd |  |-  ( A e. CC -> ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) = ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) ) | 
						
							| 191 |  | eqeq1 |  |-  ( y = ( 1 + ( A x. x ) ) -> ( y = 1 <-> ( 1 + ( A x. x ) ) = 1 ) ) | 
						
							| 192 |  | fveq2 |  |-  ( y = ( 1 + ( A x. x ) ) -> ( log ` y ) = ( log ` ( 1 + ( A x. x ) ) ) ) | 
						
							| 193 |  | oveq1 |  |-  ( y = ( 1 + ( A x. x ) ) -> ( y - 1 ) = ( ( 1 + ( A x. x ) ) - 1 ) ) | 
						
							| 194 | 192 193 | oveq12d |  |-  ( y = ( 1 + ( A x. x ) ) -> ( ( log ` y ) / ( y - 1 ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) ) | 
						
							| 195 | 191 194 | ifbieq2d |  |-  ( y = ( 1 + ( A x. x ) ) -> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) = if ( ( 1 + ( A x. x ) ) = 1 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) ) ) | 
						
							| 196 | 140 189 190 195 | fmptco |  |-  ( A e. CC -> ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) o. ( x e. S |-> ( 1 + ( A x. x ) ) ) ) = ( x e. S |-> if ( ( 1 + ( A x. x ) ) = 1 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) ) ) ) | 
						
							| 197 | 58 | eqeq2i |  |-  ( ( 1 + ( A x. x ) ) = ( 1 + 0 ) <-> ( 1 + ( A x. x ) ) = 1 ) | 
						
							| 198 | 137 84 123 | addcand |  |-  ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) = ( 1 + 0 ) <-> ( A x. x ) = 0 ) ) | 
						
							| 199 | 197 198 | bitr3id |  |-  ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) = 1 <-> ( A x. x ) = 0 ) ) | 
						
							| 200 | 97 | oveq2d |  |-  ( ( A e. CC /\ x e. S ) -> ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) | 
						
							| 201 | 199 200 | ifbieq2d |  |-  ( ( A e. CC /\ x e. S ) -> if ( ( 1 + ( A x. x ) ) = 1 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) ) = if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) | 
						
							| 202 | 201 | mpteq2dva |  |-  ( A e. CC -> ( x e. S |-> if ( ( 1 + ( A x. x ) ) = 1 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) ) ) = ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) | 
						
							| 203 | 196 202 | eqtrd |  |-  ( A e. CC -> ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) o. ( x e. S |-> ( 1 + ( A x. x ) ) ) ) = ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) | 
						
							| 204 |  | eqid |  |-  ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) | 
						
							| 205 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 206 | 205 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 207 | 206 | a1i |  |-  ( A e. CC -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) | 
						
							| 208 |  | 1cnd |  |-  ( A e. CC -> 1 e. CC ) | 
						
							| 209 | 207 207 208 | cnmptc |  |-  ( A e. CC -> ( x e. CC |-> 1 ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 210 |  | id |  |-  ( A e. CC -> A e. CC ) | 
						
							| 211 | 207 207 210 | cnmptc |  |-  ( A e. CC -> ( x e. CC |-> A ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 212 | 207 | cnmptid |  |-  ( A e. CC -> ( x e. CC |-> x ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 213 | 205 | mpomulcn |  |-  ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 214 | 213 | a1i |  |-  ( A e. CC -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 215 |  | oveq12 |  |-  ( ( u = A /\ v = x ) -> ( u x. v ) = ( A x. x ) ) | 
						
							| 216 | 207 211 212 207 207 214 215 | cnmpt12 |  |-  ( A e. CC -> ( x e. CC |-> ( A x. x ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 217 | 205 | addcn |  |-  + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 218 | 217 | a1i |  |-  ( A e. CC -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 219 | 207 209 216 218 | cnmpt12f |  |-  ( A e. CC -> ( x e. CC |-> ( 1 + ( A x. x ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 220 | 204 207 44 219 | cnmpt1res |  |-  ( A e. CC -> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 221 | 140 | fmpttd |  |-  ( A e. CC -> ( x e. S |-> ( 1 + ( A x. x ) ) ) : S --> ( 1 ( ball ` ( abs o. - ) ) 1 ) ) | 
						
							| 222 | 221 | frnd |  |-  ( A e. CC -> ran ( x e. S |-> ( 1 + ( A x. x ) ) ) C_ ( 1 ( ball ` ( abs o. - ) ) 1 ) ) | 
						
							| 223 |  | difss |  |-  ( CC \ { 0 } ) C_ CC | 
						
							| 224 | 92 223 | sstri |  |-  ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC | 
						
							| 225 | 224 | a1i |  |-  ( A e. CC -> ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) | 
						
							| 226 |  | cnrest2 |  |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( x e. S |-> ( 1 + ( A x. x ) ) ) C_ ( 1 ( ball ` ( abs o. - ) ) 1 ) /\ ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) -> ( ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ) ) | 
						
							| 227 | 206 222 225 226 | mp3an2i |  |-  ( A e. CC -> ( ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ) ) | 
						
							| 228 | 220 227 | mpbid |  |-  ( A e. CC -> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ) | 
						
							| 229 |  | blcntr |  |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ ( 1 / ( ( abs ` A ) + 1 ) ) e. RR+ ) -> 0 e. ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) ) | 
						
							| 230 | 30 31 40 229 | mp3an2i |  |-  ( A e. CC -> 0 e. ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) ) | 
						
							| 231 | 230 1 | eleqtrrdi |  |-  ( A e. CC -> 0 e. S ) | 
						
							| 232 |  | resttopon |  |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) | 
						
							| 233 | 206 44 232 | sylancr |  |-  ( A e. CC -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) | 
						
							| 234 |  | toponuni |  |-  ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 235 | 233 234 | syl |  |-  ( A e. CC -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 236 | 231 235 | eleqtrd |  |-  ( A e. CC -> 0 e. U. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 237 |  | eqid |  |-  U. ( ( TopOpen ` CCfld ) |`t S ) = U. ( ( TopOpen ` CCfld ) |`t S ) | 
						
							| 238 | 237 | cncnpi |  |-  ( ( ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) /\ 0 e. U. ( ( TopOpen ` CCfld ) |`t S ) ) -> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 0 ) ) | 
						
							| 239 | 228 236 238 | syl2anc |  |-  ( A e. CC -> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 0 ) ) | 
						
							| 240 |  | cnelprrecn |  |-  CC e. { RR , CC } | 
						
							| 241 |  | logf1o |  |-  log : ( CC \ { 0 } ) -1-1-onto-> ran log | 
						
							| 242 |  | f1of |  |-  ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log : ( CC \ { 0 } ) --> ran log ) | 
						
							| 243 | 241 242 | ax-mp |  |-  log : ( CC \ { 0 } ) --> ran log | 
						
							| 244 |  | logrncn |  |-  ( x e. ran log -> x e. CC ) | 
						
							| 245 | 244 | ssriv |  |-  ran log C_ CC | 
						
							| 246 |  | fss |  |-  ( ( log : ( CC \ { 0 } ) --> ran log /\ ran log C_ CC ) -> log : ( CC \ { 0 } ) --> CC ) | 
						
							| 247 | 243 245 246 | mp2an |  |-  log : ( CC \ { 0 } ) --> CC | 
						
							| 248 |  | fssres |  |-  ( ( log : ( CC \ { 0 } ) --> CC /\ ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ ( CC \ { 0 } ) ) -> ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> CC ) | 
						
							| 249 | 247 92 248 | mp2an |  |-  ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> CC | 
						
							| 250 |  | blcntr |  |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. CC /\ 1 e. RR+ ) -> 1 e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) | 
						
							| 251 | 30 83 134 250 | mp3an |  |-  1 e. ( 1 ( ball ` ( abs o. - ) ) 1 ) | 
						
							| 252 |  | ovex |  |-  ( 1 / y ) e. _V | 
						
							| 253 | 88 | dvlog2 |  |-  ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) = ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) | 
						
							| 254 | 252 253 | dmmpti |  |-  dom ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) = ( 1 ( ball ` ( abs o. - ) ) 1 ) | 
						
							| 255 | 251 254 | eleqtrri |  |-  1 e. dom ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) | 
						
							| 256 |  | eqid |  |-  ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) = ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) | 
						
							| 257 | 253 | fveq1i |  |-  ( ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 1 ) = ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) ` 1 ) | 
						
							| 258 |  | oveq2 |  |-  ( y = 1 -> ( 1 / y ) = ( 1 / 1 ) ) | 
						
							| 259 |  | 1div1e1 |  |-  ( 1 / 1 ) = 1 | 
						
							| 260 | 258 259 | eqtrdi |  |-  ( y = 1 -> ( 1 / y ) = 1 ) | 
						
							| 261 |  | eqid |  |-  ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) = ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) | 
						
							| 262 |  | 1ex |  |-  1 e. _V | 
						
							| 263 | 260 261 262 | fvmpt |  |-  ( 1 e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) ` 1 ) = 1 ) | 
						
							| 264 | 251 263 | ax-mp |  |-  ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) ` 1 ) = 1 | 
						
							| 265 | 257 264 | eqtr2i |  |-  1 = ( ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 1 ) | 
						
							| 266 | 265 | a1i |  |-  ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> 1 = ( ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 1 ) ) | 
						
							| 267 |  | fvres |  |-  ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) = ( log ` y ) ) | 
						
							| 268 |  | fvres |  |-  ( 1 e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) = ( log ` 1 ) ) | 
						
							| 269 | 251 268 | mp1i |  |-  ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) = ( log ` 1 ) ) | 
						
							| 270 |  | log1 |  |-  ( log ` 1 ) = 0 | 
						
							| 271 | 269 270 | eqtrdi |  |-  ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) = 0 ) | 
						
							| 272 | 267 271 | oveq12d |  |-  ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) - ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) ) = ( ( log ` y ) - 0 ) ) | 
						
							| 273 | 92 | sseli |  |-  ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> y e. ( CC \ { 0 } ) ) | 
						
							| 274 |  | eldifsn |  |-  ( y e. ( CC \ { 0 } ) <-> ( y e. CC /\ y =/= 0 ) ) | 
						
							| 275 | 273 274 | sylib |  |-  ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( y e. CC /\ y =/= 0 ) ) | 
						
							| 276 |  | logcl |  |-  ( ( y e. CC /\ y =/= 0 ) -> ( log ` y ) e. CC ) | 
						
							| 277 | 275 276 | syl |  |-  ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( log ` y ) e. CC ) | 
						
							| 278 | 277 | subid1d |  |-  ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log ` y ) - 0 ) = ( log ` y ) ) | 
						
							| 279 | 272 278 | eqtr2d |  |-  ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( log ` y ) = ( ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) - ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) ) ) | 
						
							| 280 | 279 | oveq1d |  |-  ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log ` y ) / ( y - 1 ) ) = ( ( ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) - ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) ) / ( y - 1 ) ) ) | 
						
							| 281 | 266 280 | ifeq12d |  |-  ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) = if ( y = 1 , ( ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 1 ) , ( ( ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) - ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) ) / ( y - 1 ) ) ) ) | 
						
							| 282 | 281 | mpteq2ia |  |-  ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) = ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , ( ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 1 ) , ( ( ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) - ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) ) / ( y - 1 ) ) ) ) | 
						
							| 283 | 256 205 282 | dvcnp |  |-  ( ( ( CC e. { RR , CC } /\ ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> CC /\ ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) /\ 1 e. dom ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ) -> ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` 1 ) ) | 
						
							| 284 | 255 283 | mpan2 |  |-  ( ( CC e. { RR , CC } /\ ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> CC /\ ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) -> ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` 1 ) ) | 
						
							| 285 | 240 249 224 284 | mp3an |  |-  ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` 1 ) | 
						
							| 286 |  | oveq2 |  |-  ( x = 0 -> ( A x. x ) = ( A x. 0 ) ) | 
						
							| 287 | 286 | oveq2d |  |-  ( x = 0 -> ( 1 + ( A x. x ) ) = ( 1 + ( A x. 0 ) ) ) | 
						
							| 288 |  | eqid |  |-  ( x e. S |-> ( 1 + ( A x. x ) ) ) = ( x e. S |-> ( 1 + ( A x. x ) ) ) | 
						
							| 289 |  | ovex |  |-  ( 1 + ( A x. 0 ) ) e. _V | 
						
							| 290 | 287 288 289 | fvmpt |  |-  ( 0 e. S -> ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) = ( 1 + ( A x. 0 ) ) ) | 
						
							| 291 | 231 290 | syl |  |-  ( A e. CC -> ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) = ( 1 + ( A x. 0 ) ) ) | 
						
							| 292 |  | mul01 |  |-  ( A e. CC -> ( A x. 0 ) = 0 ) | 
						
							| 293 | 292 | oveq2d |  |-  ( A e. CC -> ( 1 + ( A x. 0 ) ) = ( 1 + 0 ) ) | 
						
							| 294 | 293 58 | eqtrdi |  |-  ( A e. CC -> ( 1 + ( A x. 0 ) ) = 1 ) | 
						
							| 295 | 291 294 | eqtrd |  |-  ( A e. CC -> ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) = 1 ) | 
						
							| 296 | 295 | fveq2d |  |-  ( A e. CC -> ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) ) = ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` 1 ) ) | 
						
							| 297 | 285 296 | eleqtrrid |  |-  ( A e. CC -> ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) ) ) | 
						
							| 298 |  | cnpco |  |-  ( ( ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 0 ) /\ ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) ) ) -> ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) o. ( x e. S |-> ( 1 + ( A x. x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) | 
						
							| 299 | 239 297 298 | syl2anc |  |-  ( A e. CC -> ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) o. ( x e. S |-> ( 1 + ( A x. x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) | 
						
							| 300 | 203 299 | eqeltrrd |  |-  ( A e. CC -> ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) | 
						
							| 301 | 207 207 210 | cnmptc |  |-  ( A e. CC -> ( y e. CC |-> A ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 302 | 207 | cnmptid |  |-  ( A e. CC -> ( y e. CC |-> y ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 303 |  | oveq12 |  |-  ( ( u = A /\ v = y ) -> ( u x. v ) = ( A x. y ) ) | 
						
							| 304 | 207 301 302 207 207 214 303 | cnmpt12 |  |-  ( A e. CC -> ( y e. CC |-> ( A x. y ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 305 |  | efcn |  |-  exp e. ( CC -cn-> CC ) | 
						
							| 306 | 205 | cncfcn1 |  |-  ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 307 | 305 306 | eleqtri |  |-  exp e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 308 | 307 | a1i |  |-  ( A e. CC -> exp e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 309 | 207 304 308 | cnmpt11f |  |-  ( A e. CC -> ( y e. CC |-> ( exp ` ( A x. y ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 310 | 176 | fmpttd |  |-  ( A e. CC -> ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) : S --> CC ) | 
						
							| 311 | 310 231 | ffvelcdmd |  |-  ( A e. CC -> ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ` 0 ) e. CC ) | 
						
							| 312 |  | unicntop |  |-  CC = U. ( TopOpen ` CCfld ) | 
						
							| 313 | 312 | cncnpi |  |-  ( ( ( y e. CC |-> ( exp ` ( A x. y ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) /\ ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ` 0 ) e. CC ) -> ( y e. CC |-> ( exp ` ( A x. y ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ` 0 ) ) ) | 
						
							| 314 | 309 311 313 | syl2anc |  |-  ( A e. CC -> ( y e. CC |-> ( exp ` ( A x. y ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ` 0 ) ) ) | 
						
							| 315 |  | cnpco |  |-  ( ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) /\ ( y e. CC |-> ( exp ` ( A x. y ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ` 0 ) ) ) -> ( ( y e. CC |-> ( exp ` ( A x. y ) ) ) o. ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) | 
						
							| 316 | 300 314 315 | syl2anc |  |-  ( A e. CC -> ( ( y e. CC |-> ( exp ` ( A x. y ) ) ) o. ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) | 
						
							| 317 | 188 316 | eqeltrd |  |-  ( A e. CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` S ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) | 
						
							| 318 | 205 | cnfldtop |  |-  ( TopOpen ` CCfld ) e. Top | 
						
							| 319 | 318 | a1i |  |-  ( A e. CC -> ( TopOpen ` CCfld ) e. Top ) | 
						
							| 320 | 205 | cnfldtopn |  |-  ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) | 
						
							| 321 | 320 | blopn |  |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ ( 1 / ( ( abs ` A ) + 1 ) ) e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) e. ( TopOpen ` CCfld ) ) | 
						
							| 322 | 30 31 41 321 | mp3an2i |  |-  ( A e. CC -> ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) e. ( TopOpen ` CCfld ) ) | 
						
							| 323 | 1 322 | eqeltrid |  |-  ( A e. CC -> S e. ( TopOpen ` CCfld ) ) | 
						
							| 324 |  | isopn3i |  |-  ( ( ( TopOpen ` CCfld ) e. Top /\ S e. ( TopOpen ` CCfld ) ) -> ( ( int ` ( TopOpen ` CCfld ) ) ` S ) = S ) | 
						
							| 325 | 318 323 324 | sylancr |  |-  ( A e. CC -> ( ( int ` ( TopOpen ` CCfld ) ) ` S ) = S ) | 
						
							| 326 | 231 325 | eleqtrrd |  |-  ( A e. CC -> 0 e. ( ( int ` ( TopOpen ` CCfld ) ) ` S ) ) | 
						
							| 327 |  | efcl |  |-  ( A e. CC -> ( exp ` A ) e. CC ) | 
						
							| 328 | 327 | ad2antrr |  |-  ( ( ( A e. CC /\ x e. CC ) /\ x = 0 ) -> ( exp ` A ) e. CC ) | 
						
							| 329 | 83 15 85 | sylancr |  |-  ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( 1 + ( A x. x ) ) e. CC ) | 
						
							| 330 | 329 48 | cxpcld |  |-  ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) e. CC ) | 
						
							| 331 | 328 330 | ifclda |  |-  ( ( A e. CC /\ x e. CC ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) e. CC ) | 
						
							| 332 | 331 | fmpttd |  |-  ( A e. CC -> ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) : CC --> CC ) | 
						
							| 333 | 312 312 | cnprest |  |-  ( ( ( ( TopOpen ` CCfld ) e. Top /\ S C_ CC ) /\ ( 0 e. ( ( int ` ( TopOpen ` CCfld ) ) ` S ) /\ ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) : CC --> CC ) ) -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` 0 ) <-> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` S ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) ) | 
						
							| 334 | 319 44 326 332 333 | syl22anc |  |-  ( A e. CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` 0 ) <-> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` S ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) ) | 
						
							| 335 | 317 334 | mpbird |  |-  ( A e. CC -> ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) | 
						
							| 336 | 312 | cnpresti |  |-  ( ( ( 0 [,) +oo ) C_ CC /\ 0 e. ( 0 [,) +oo ) /\ ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` ( 0 [,) +oo ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) | 
						
							| 337 | 4 27 335 336 | mp3an2i |  |-  ( A e. CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` ( 0 [,) +oo ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) | 
						
							| 338 | 25 337 | eqeltrd |  |-  ( A e. CC -> ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) | 
						
							| 339 |  | simpl |  |-  ( ( A e. CC /\ k e. RR+ ) -> A e. CC ) | 
						
							| 340 |  | rpcn |  |-  ( k e. RR+ -> k e. CC ) | 
						
							| 341 | 340 | adantl |  |-  ( ( A e. CC /\ k e. RR+ ) -> k e. CC ) | 
						
							| 342 |  | rpne0 |  |-  ( k e. RR+ -> k =/= 0 ) | 
						
							| 343 | 342 | adantl |  |-  ( ( A e. CC /\ k e. RR+ ) -> k =/= 0 ) | 
						
							| 344 | 339 341 343 | divcld |  |-  ( ( A e. CC /\ k e. RR+ ) -> ( A / k ) e. CC ) | 
						
							| 345 |  | addcl |  |-  ( ( 1 e. CC /\ ( A / k ) e. CC ) -> ( 1 + ( A / k ) ) e. CC ) | 
						
							| 346 | 83 344 345 | sylancr |  |-  ( ( A e. CC /\ k e. RR+ ) -> ( 1 + ( A / k ) ) e. CC ) | 
						
							| 347 | 346 341 | cxpcld |  |-  ( ( A e. CC /\ k e. RR+ ) -> ( ( 1 + ( A / k ) ) ^c k ) e. CC ) | 
						
							| 348 |  | oveq2 |  |-  ( k = ( 1 / x ) -> ( A / k ) = ( A / ( 1 / x ) ) ) | 
						
							| 349 | 348 | oveq2d |  |-  ( k = ( 1 / x ) -> ( 1 + ( A / k ) ) = ( 1 + ( A / ( 1 / x ) ) ) ) | 
						
							| 350 |  | id |  |-  ( k = ( 1 / x ) -> k = ( 1 / x ) ) | 
						
							| 351 | 349 350 | oveq12d |  |-  ( k = ( 1 / x ) -> ( ( 1 + ( A / k ) ) ^c k ) = ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) | 
						
							| 352 |  | eqid |  |-  ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) = ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) | 
						
							| 353 | 327 347 351 205 352 | rlimcnp3 |  |-  ( A e. CC -> ( ( k e. RR+ |-> ( ( 1 + ( A / k ) ) ^c k ) ) ~~>r ( exp ` A ) <-> ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) ) | 
						
							| 354 | 338 353 | mpbird |  |-  ( A e. CC -> ( k e. RR+ |-> ( ( 1 + ( A / k ) ) ^c k ) ) ~~>r ( exp ` A ) ) |