Step |
Hyp |
Ref |
Expression |
1 |
|
efrlim.1 |
|- S = ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) |
2 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
3 |
|
ax-resscn |
|- RR C_ CC |
4 |
2 3
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
5 |
4
|
sseli |
|- ( x e. ( 0 [,) +oo ) -> x e. CC ) |
6 |
|
simpll |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> A e. CC ) |
7 |
|
1cnd |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> 1 e. CC ) |
8 |
|
simplr |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> x e. CC ) |
9 |
|
ax-1ne0 |
|- 1 =/= 0 |
10 |
9
|
a1i |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> 1 =/= 0 ) |
11 |
|
simpr |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> -. x = 0 ) |
12 |
11
|
neqned |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> x =/= 0 ) |
13 |
6 7 8 10 12
|
divdiv2d |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( A / ( 1 / x ) ) = ( ( A x. x ) / 1 ) ) |
14 |
|
mulcl |
|- ( ( A e. CC /\ x e. CC ) -> ( A x. x ) e. CC ) |
15 |
14
|
adantr |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( A x. x ) e. CC ) |
16 |
15
|
div1d |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( ( A x. x ) / 1 ) = ( A x. x ) ) |
17 |
13 16
|
eqtrd |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( A / ( 1 / x ) ) = ( A x. x ) ) |
18 |
17
|
oveq2d |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( 1 + ( A / ( 1 / x ) ) ) = ( 1 + ( A x. x ) ) ) |
19 |
18
|
oveq1d |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) = ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) |
20 |
19
|
ifeq2da |
|- ( ( A e. CC /\ x e. CC ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) = if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |
21 |
5 20
|
sylan2 |
|- ( ( A e. CC /\ x e. ( 0 [,) +oo ) ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) = if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |
22 |
21
|
mpteq2dva |
|- ( A e. CC -> ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) ) = ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) ) |
23 |
|
resmpt |
|- ( ( 0 [,) +oo ) C_ CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` ( 0 [,) +oo ) ) = ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) ) |
24 |
4 23
|
ax-mp |
|- ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` ( 0 [,) +oo ) ) = ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |
25 |
22 24
|
eqtr4di |
|- ( A e. CC -> ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) ) = ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` ( 0 [,) +oo ) ) ) |
26 |
|
0e0icopnf |
|- 0 e. ( 0 [,) +oo ) |
27 |
26
|
a1i |
|- ( A e. CC -> 0 e. ( 0 [,) +oo ) ) |
28 |
|
eqeq2 |
|- ( ( exp ` ( A x. 1 ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) -> ( if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. 1 ) ) <-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) ) |
29 |
|
eqeq2 |
|- ( ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) -> ( if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) <-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) ) |
30 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
31 |
|
0cnd |
|- ( A e. CC -> 0 e. CC ) |
32 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
33 |
|
peano2re |
|- ( ( abs ` A ) e. RR -> ( ( abs ` A ) + 1 ) e. RR ) |
34 |
32 33
|
syl |
|- ( A e. CC -> ( ( abs ` A ) + 1 ) e. RR ) |
35 |
|
0red |
|- ( A e. CC -> 0 e. RR ) |
36 |
|
absge0 |
|- ( A e. CC -> 0 <_ ( abs ` A ) ) |
37 |
32
|
ltp1d |
|- ( A e. CC -> ( abs ` A ) < ( ( abs ` A ) + 1 ) ) |
38 |
35 32 34 36 37
|
lelttrd |
|- ( A e. CC -> 0 < ( ( abs ` A ) + 1 ) ) |
39 |
34 38
|
elrpd |
|- ( A e. CC -> ( ( abs ` A ) + 1 ) e. RR+ ) |
40 |
39
|
rpreccld |
|- ( A e. CC -> ( 1 / ( ( abs ` A ) + 1 ) ) e. RR+ ) |
41 |
40
|
rpxrd |
|- ( A e. CC -> ( 1 / ( ( abs ` A ) + 1 ) ) e. RR* ) |
42 |
|
blssm |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ ( 1 / ( ( abs ` A ) + 1 ) ) e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) C_ CC ) |
43 |
30 31 41 42
|
mp3an2i |
|- ( A e. CC -> ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) C_ CC ) |
44 |
1 43
|
eqsstrid |
|- ( A e. CC -> S C_ CC ) |
45 |
44
|
sselda |
|- ( ( A e. CC /\ x e. S ) -> x e. CC ) |
46 |
|
mul0or |
|- ( ( A e. CC /\ x e. CC ) -> ( ( A x. x ) = 0 <-> ( A = 0 \/ x = 0 ) ) ) |
47 |
45 46
|
syldan |
|- ( ( A e. CC /\ x e. S ) -> ( ( A x. x ) = 0 <-> ( A = 0 \/ x = 0 ) ) ) |
48 |
47
|
biimpa |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A x. x ) = 0 ) -> ( A = 0 \/ x = 0 ) ) |
49 |
8 12
|
reccld |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( 1 / x ) e. CC ) |
50 |
45 49
|
syldanl |
|- ( ( ( A e. CC /\ x e. S ) /\ -. x = 0 ) -> ( 1 / x ) e. CC ) |
51 |
50
|
adantlr |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( 1 / x ) e. CC ) |
52 |
51
|
1cxpd |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( 1 ^c ( 1 / x ) ) = 1 ) |
53 |
|
simplr |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> A = 0 ) |
54 |
53
|
oveq1d |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( A x. x ) = ( 0 x. x ) ) |
55 |
45
|
ad2antrr |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> x e. CC ) |
56 |
55
|
mul02d |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( 0 x. x ) = 0 ) |
57 |
54 56
|
eqtrd |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( A x. x ) = 0 ) |
58 |
57
|
oveq2d |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( 1 + ( A x. x ) ) = ( 1 + 0 ) ) |
59 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
60 |
58 59
|
eqtrdi |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( 1 + ( A x. x ) ) = 1 ) |
61 |
60
|
oveq1d |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) = ( 1 ^c ( 1 / x ) ) ) |
62 |
53
|
fveq2d |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( exp ` A ) = ( exp ` 0 ) ) |
63 |
|
ef0 |
|- ( exp ` 0 ) = 1 |
64 |
62 63
|
eqtrdi |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( exp ` A ) = 1 ) |
65 |
52 61 64
|
3eqtr4d |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) = ( exp ` A ) ) |
66 |
65
|
ifeq2da |
|- ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = if ( x = 0 , ( exp ` A ) , ( exp ` A ) ) ) |
67 |
|
ifid |
|- if ( x = 0 , ( exp ` A ) , ( exp ` A ) ) = ( exp ` A ) |
68 |
66 67
|
eqtrdi |
|- ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` A ) ) |
69 |
|
iftrue |
|- ( x = 0 -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` A ) ) |
70 |
69
|
adantl |
|- ( ( ( A e. CC /\ x e. S ) /\ x = 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` A ) ) |
71 |
68 70
|
jaodan |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A = 0 \/ x = 0 ) ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` A ) ) |
72 |
|
mulid1 |
|- ( A e. CC -> ( A x. 1 ) = A ) |
73 |
72
|
ad2antrr |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A = 0 \/ x = 0 ) ) -> ( A x. 1 ) = A ) |
74 |
73
|
fveq2d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A = 0 \/ x = 0 ) ) -> ( exp ` ( A x. 1 ) ) = ( exp ` A ) ) |
75 |
71 74
|
eqtr4d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A = 0 \/ x = 0 ) ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. 1 ) ) ) |
76 |
48 75
|
syldan |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A x. x ) = 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. 1 ) ) ) |
77 |
|
mulne0b |
|- ( ( A e. CC /\ x e. CC ) -> ( ( A =/= 0 /\ x =/= 0 ) <-> ( A x. x ) =/= 0 ) ) |
78 |
45 77
|
syldan |
|- ( ( A e. CC /\ x e. S ) -> ( ( A =/= 0 /\ x =/= 0 ) <-> ( A x. x ) =/= 0 ) ) |
79 |
|
df-ne |
|- ( ( A x. x ) =/= 0 <-> -. ( A x. x ) = 0 ) |
80 |
78 79
|
bitrdi |
|- ( ( A e. CC /\ x e. S ) -> ( ( A =/= 0 /\ x =/= 0 ) <-> -. ( A x. x ) = 0 ) ) |
81 |
|
simprr |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> x =/= 0 ) |
82 |
81
|
neneqd |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> -. x = 0 ) |
83 |
82
|
iffalsed |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) |
84 |
|
ax-1cn |
|- 1 e. CC |
85 |
45 14
|
syldan |
|- ( ( A e. CC /\ x e. S ) -> ( A x. x ) e. CC ) |
86 |
|
addcl |
|- ( ( 1 e. CC /\ ( A x. x ) e. CC ) -> ( 1 + ( A x. x ) ) e. CC ) |
87 |
84 85 86
|
sylancr |
|- ( ( A e. CC /\ x e. S ) -> ( 1 + ( A x. x ) ) e. CC ) |
88 |
87
|
adantr |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( 1 + ( A x. x ) ) e. CC ) |
89 |
|
eqid |
|- ( 1 ( ball ` ( abs o. - ) ) 1 ) = ( 1 ( ball ` ( abs o. - ) ) 1 ) |
90 |
89
|
dvlog2lem |
|- ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ ( CC \ ( -oo (,] 0 ) ) |
91 |
|
eqid |
|- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
92 |
91
|
logdmss |
|- ( CC \ ( -oo (,] 0 ) ) C_ ( CC \ { 0 } ) |
93 |
90 92
|
sstri |
|- ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ ( CC \ { 0 } ) |
94 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
95 |
94
|
cnmetdval |
|- ( ( ( 1 + ( A x. x ) ) e. CC /\ 1 e. CC ) -> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) = ( abs ` ( ( 1 + ( A x. x ) ) - 1 ) ) ) |
96 |
87 84 95
|
sylancl |
|- ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) = ( abs ` ( ( 1 + ( A x. x ) ) - 1 ) ) ) |
97 |
|
pncan2 |
|- ( ( 1 e. CC /\ ( A x. x ) e. CC ) -> ( ( 1 + ( A x. x ) ) - 1 ) = ( A x. x ) ) |
98 |
84 85 97
|
sylancr |
|- ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) - 1 ) = ( A x. x ) ) |
99 |
98
|
fveq2d |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` ( ( 1 + ( A x. x ) ) - 1 ) ) = ( abs ` ( A x. x ) ) ) |
100 |
96 99
|
eqtrd |
|- ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) = ( abs ` ( A x. x ) ) ) |
101 |
85
|
abscld |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` ( A x. x ) ) e. RR ) |
102 |
34
|
adantr |
|- ( ( A e. CC /\ x e. S ) -> ( ( abs ` A ) + 1 ) e. RR ) |
103 |
45
|
abscld |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` x ) e. RR ) |
104 |
102 103
|
remulcld |
|- ( ( A e. CC /\ x e. S ) -> ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) e. RR ) |
105 |
|
1red |
|- ( ( A e. CC /\ x e. S ) -> 1 e. RR ) |
106 |
|
absmul |
|- ( ( A e. CC /\ x e. CC ) -> ( abs ` ( A x. x ) ) = ( ( abs ` A ) x. ( abs ` x ) ) ) |
107 |
45 106
|
syldan |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` ( A x. x ) ) = ( ( abs ` A ) x. ( abs ` x ) ) ) |
108 |
32
|
adantr |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` A ) e. RR ) |
109 |
108 33
|
syl |
|- ( ( A e. CC /\ x e. S ) -> ( ( abs ` A ) + 1 ) e. RR ) |
110 |
45
|
absge0d |
|- ( ( A e. CC /\ x e. S ) -> 0 <_ ( abs ` x ) ) |
111 |
108
|
lep1d |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` A ) <_ ( ( abs ` A ) + 1 ) ) |
112 |
108 109 103 110 111
|
lemul1ad |
|- ( ( A e. CC /\ x e. S ) -> ( ( abs ` A ) x. ( abs ` x ) ) <_ ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) ) |
113 |
107 112
|
eqbrtrd |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` ( A x. x ) ) <_ ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) ) |
114 |
|
0cn |
|- 0 e. CC |
115 |
94
|
cnmetdval |
|- ( ( x e. CC /\ 0 e. CC ) -> ( x ( abs o. - ) 0 ) = ( abs ` ( x - 0 ) ) ) |
116 |
45 114 115
|
sylancl |
|- ( ( A e. CC /\ x e. S ) -> ( x ( abs o. - ) 0 ) = ( abs ` ( x - 0 ) ) ) |
117 |
45
|
subid1d |
|- ( ( A e. CC /\ x e. S ) -> ( x - 0 ) = x ) |
118 |
117
|
fveq2d |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` ( x - 0 ) ) = ( abs ` x ) ) |
119 |
116 118
|
eqtrd |
|- ( ( A e. CC /\ x e. S ) -> ( x ( abs o. - ) 0 ) = ( abs ` x ) ) |
120 |
|
simpr |
|- ( ( A e. CC /\ x e. S ) -> x e. S ) |
121 |
120 1
|
eleqtrdi |
|- ( ( A e. CC /\ x e. S ) -> x e. ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) ) |
122 |
30
|
a1i |
|- ( ( A e. CC /\ x e. S ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
123 |
41
|
adantr |
|- ( ( A e. CC /\ x e. S ) -> ( 1 / ( ( abs ` A ) + 1 ) ) e. RR* ) |
124 |
|
0cnd |
|- ( ( A e. CC /\ x e. S ) -> 0 e. CC ) |
125 |
|
elbl3 |
|- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ ( 1 / ( ( abs ` A ) + 1 ) ) e. RR* ) /\ ( 0 e. CC /\ x e. CC ) ) -> ( x e. ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) <-> ( x ( abs o. - ) 0 ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) ) |
126 |
122 123 124 45 125
|
syl22anc |
|- ( ( A e. CC /\ x e. S ) -> ( x e. ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) <-> ( x ( abs o. - ) 0 ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) ) |
127 |
121 126
|
mpbid |
|- ( ( A e. CC /\ x e. S ) -> ( x ( abs o. - ) 0 ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) |
128 |
119 127
|
eqbrtrrd |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` x ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) |
129 |
38
|
adantr |
|- ( ( A e. CC /\ x e. S ) -> 0 < ( ( abs ` A ) + 1 ) ) |
130 |
|
ltmuldiv2 |
|- ( ( ( abs ` x ) e. RR /\ 1 e. RR /\ ( ( ( abs ` A ) + 1 ) e. RR /\ 0 < ( ( abs ` A ) + 1 ) ) ) -> ( ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) < 1 <-> ( abs ` x ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) ) |
131 |
103 105 109 129 130
|
syl112anc |
|- ( ( A e. CC /\ x e. S ) -> ( ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) < 1 <-> ( abs ` x ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) ) |
132 |
128 131
|
mpbird |
|- ( ( A e. CC /\ x e. S ) -> ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) < 1 ) |
133 |
101 104 105 113 132
|
lelttrd |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` ( A x. x ) ) < 1 ) |
134 |
100 133
|
eqbrtrd |
|- ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) < 1 ) |
135 |
|
1rp |
|- 1 e. RR+ |
136 |
|
rpxr |
|- ( 1 e. RR+ -> 1 e. RR* ) |
137 |
135 136
|
mp1i |
|- ( ( A e. CC /\ x e. S ) -> 1 e. RR* ) |
138 |
|
1cnd |
|- ( ( A e. CC /\ x e. S ) -> 1 e. CC ) |
139 |
|
elbl3 |
|- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 1 e. CC /\ ( 1 + ( A x. x ) ) e. CC ) ) -> ( ( 1 + ( A x. x ) ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) < 1 ) ) |
140 |
122 137 138 87 139
|
syl22anc |
|- ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) < 1 ) ) |
141 |
134 140
|
mpbird |
|- ( ( A e. CC /\ x e. S ) -> ( 1 + ( A x. x ) ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
142 |
93 141
|
sselid |
|- ( ( A e. CC /\ x e. S ) -> ( 1 + ( A x. x ) ) e. ( CC \ { 0 } ) ) |
143 |
|
eldifsni |
|- ( ( 1 + ( A x. x ) ) e. ( CC \ { 0 } ) -> ( 1 + ( A x. x ) ) =/= 0 ) |
144 |
142 143
|
syl |
|- ( ( A e. CC /\ x e. S ) -> ( 1 + ( A x. x ) ) =/= 0 ) |
145 |
144
|
adantr |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( 1 + ( A x. x ) ) =/= 0 ) |
146 |
45
|
adantr |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> x e. CC ) |
147 |
146 81
|
reccld |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( 1 / x ) e. CC ) |
148 |
88 145 147
|
cxpefd |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) = ( exp ` ( ( 1 / x ) x. ( log ` ( 1 + ( A x. x ) ) ) ) ) ) |
149 |
87 144
|
logcld |
|- ( ( A e. CC /\ x e. S ) -> ( log ` ( 1 + ( A x. x ) ) ) e. CC ) |
150 |
149
|
adantr |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( log ` ( 1 + ( A x. x ) ) ) e. CC ) |
151 |
147 150
|
mulcomd |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( 1 / x ) x. ( log ` ( 1 + ( A x. x ) ) ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) x. ( 1 / x ) ) ) |
152 |
|
simpll |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> A e. CC ) |
153 |
|
simprl |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> A =/= 0 ) |
154 |
152 153
|
dividd |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( A / A ) = 1 ) |
155 |
154
|
oveq1d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( A / A ) / x ) = ( 1 / x ) ) |
156 |
152 152 146 153 81
|
divdiv1d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( A / A ) / x ) = ( A / ( A x. x ) ) ) |
157 |
155 156
|
eqtr3d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( 1 / x ) = ( A / ( A x. x ) ) ) |
158 |
157
|
oveq2d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( log ` ( 1 + ( A x. x ) ) ) x. ( 1 / x ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) x. ( A / ( A x. x ) ) ) ) |
159 |
85
|
adantr |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( A x. x ) e. CC ) |
160 |
78
|
biimpa |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( A x. x ) =/= 0 ) |
161 |
150 152 159 160
|
div12d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( log ` ( 1 + ( A x. x ) ) ) x. ( A / ( A x. x ) ) ) = ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) |
162 |
151 158 161
|
3eqtrd |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( 1 / x ) x. ( log ` ( 1 + ( A x. x ) ) ) ) = ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) |
163 |
162
|
fveq2d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( exp ` ( ( 1 / x ) x. ( log ` ( 1 + ( A x. x ) ) ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
164 |
83 148 163
|
3eqtrd |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
165 |
164
|
ex |
|- ( ( A e. CC /\ x e. S ) -> ( ( A =/= 0 /\ x =/= 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) |
166 |
80 165
|
sylbird |
|- ( ( A e. CC /\ x e. S ) -> ( -. ( A x. x ) = 0 -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) |
167 |
166
|
imp |
|- ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
168 |
28 29 76 167
|
ifbothda |
|- ( ( A e. CC /\ x e. S ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) |
169 |
168
|
mpteq2dva |
|- ( A e. CC -> ( x e. S |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) = ( x e. S |-> if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) ) |
170 |
44
|
resmptd |
|- ( A e. CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` S ) = ( x e. S |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) ) |
171 |
|
1cnd |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A x. x ) = 0 ) -> 1 e. CC ) |
172 |
149
|
adantr |
|- ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> ( log ` ( 1 + ( A x. x ) ) ) e. CC ) |
173 |
85
|
adantr |
|- ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> ( A x. x ) e. CC ) |
174 |
|
simpr |
|- ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> -. ( A x. x ) = 0 ) |
175 |
174
|
neqned |
|- ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> ( A x. x ) =/= 0 ) |
176 |
172 173 175
|
divcld |
|- ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) e. CC ) |
177 |
171 176
|
ifclda |
|- ( ( A e. CC /\ x e. S ) -> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) e. CC ) |
178 |
|
eqidd |
|- ( A e. CC -> ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) = ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
179 |
|
eqidd |
|- ( A e. CC -> ( y e. CC |-> ( exp ` ( A x. y ) ) ) = ( y e. CC |-> ( exp ` ( A x. y ) ) ) ) |
180 |
|
oveq2 |
|- ( y = if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) -> ( A x. y ) = ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
181 |
180
|
fveq2d |
|- ( y = if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) -> ( exp ` ( A x. y ) ) = ( exp ` ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) |
182 |
|
oveq2 |
|- ( if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) = 1 -> ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) = ( A x. 1 ) ) |
183 |
182
|
fveq2d |
|- ( if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) = 1 -> ( exp ` ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) = ( exp ` ( A x. 1 ) ) ) |
184 |
|
oveq2 |
|- ( if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) -> ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) = ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) |
185 |
184
|
fveq2d |
|- ( if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) -> ( exp ` ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
186 |
183 185
|
ifsb |
|- ( exp ` ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
187 |
181 186
|
eqtrdi |
|- ( y = if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) -> ( exp ` ( A x. y ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) |
188 |
177 178 179 187
|
fmptco |
|- ( A e. CC -> ( ( y e. CC |-> ( exp ` ( A x. y ) ) ) o. ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) = ( x e. S |-> if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) ) |
189 |
169 170 188
|
3eqtr4d |
|- ( A e. CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` S ) = ( ( y e. CC |-> ( exp ` ( A x. y ) ) ) o. ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) |
190 |
|
eqidd |
|- ( A e. CC -> ( x e. S |-> ( 1 + ( A x. x ) ) ) = ( x e. S |-> ( 1 + ( A x. x ) ) ) ) |
191 |
|
eqidd |
|- ( A e. CC -> ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) = ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) ) |
192 |
|
eqeq1 |
|- ( y = ( 1 + ( A x. x ) ) -> ( y = 1 <-> ( 1 + ( A x. x ) ) = 1 ) ) |
193 |
|
fveq2 |
|- ( y = ( 1 + ( A x. x ) ) -> ( log ` y ) = ( log ` ( 1 + ( A x. x ) ) ) ) |
194 |
|
oveq1 |
|- ( y = ( 1 + ( A x. x ) ) -> ( y - 1 ) = ( ( 1 + ( A x. x ) ) - 1 ) ) |
195 |
193 194
|
oveq12d |
|- ( y = ( 1 + ( A x. x ) ) -> ( ( log ` y ) / ( y - 1 ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) ) |
196 |
192 195
|
ifbieq2d |
|- ( y = ( 1 + ( A x. x ) ) -> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) = if ( ( 1 + ( A x. x ) ) = 1 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) ) ) |
197 |
141 190 191 196
|
fmptco |
|- ( A e. CC -> ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) o. ( x e. S |-> ( 1 + ( A x. x ) ) ) ) = ( x e. S |-> if ( ( 1 + ( A x. x ) ) = 1 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) ) ) ) |
198 |
59
|
eqeq2i |
|- ( ( 1 + ( A x. x ) ) = ( 1 + 0 ) <-> ( 1 + ( A x. x ) ) = 1 ) |
199 |
138 85 124
|
addcand |
|- ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) = ( 1 + 0 ) <-> ( A x. x ) = 0 ) ) |
200 |
198 199
|
bitr3id |
|- ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) = 1 <-> ( A x. x ) = 0 ) ) |
201 |
98
|
oveq2d |
|- ( ( A e. CC /\ x e. S ) -> ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) |
202 |
200 201
|
ifbieq2d |
|- ( ( A e. CC /\ x e. S ) -> if ( ( 1 + ( A x. x ) ) = 1 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) ) = if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) |
203 |
202
|
mpteq2dva |
|- ( A e. CC -> ( x e. S |-> if ( ( 1 + ( A x. x ) ) = 1 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) ) ) = ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
204 |
197 203
|
eqtrd |
|- ( A e. CC -> ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) o. ( x e. S |-> ( 1 + ( A x. x ) ) ) ) = ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
205 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
206 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
207 |
206
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
208 |
207
|
a1i |
|- ( A e. CC -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
209 |
|
1cnd |
|- ( A e. CC -> 1 e. CC ) |
210 |
208 208 209
|
cnmptc |
|- ( A e. CC -> ( x e. CC |-> 1 ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
211 |
|
id |
|- ( A e. CC -> A e. CC ) |
212 |
208 208 211
|
cnmptc |
|- ( A e. CC -> ( x e. CC |-> A ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
213 |
208
|
cnmptid |
|- ( A e. CC -> ( x e. CC |-> x ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
214 |
206
|
mulcn |
|- x. e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
215 |
214
|
a1i |
|- ( A e. CC -> x. e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
216 |
208 212 213 215
|
cnmpt12f |
|- ( A e. CC -> ( x e. CC |-> ( A x. x ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
217 |
206
|
addcn |
|- + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
218 |
217
|
a1i |
|- ( A e. CC -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
219 |
208 210 216 218
|
cnmpt12f |
|- ( A e. CC -> ( x e. CC |-> ( 1 + ( A x. x ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
220 |
205 208 44 219
|
cnmpt1res |
|- ( A e. CC -> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) ) |
221 |
141
|
fmpttd |
|- ( A e. CC -> ( x e. S |-> ( 1 + ( A x. x ) ) ) : S --> ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
222 |
221
|
frnd |
|- ( A e. CC -> ran ( x e. S |-> ( 1 + ( A x. x ) ) ) C_ ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
223 |
|
difss |
|- ( CC \ { 0 } ) C_ CC |
224 |
93 223
|
sstri |
|- ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC |
225 |
224
|
a1i |
|- ( A e. CC -> ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) |
226 |
|
cnrest2 |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( x e. S |-> ( 1 + ( A x. x ) ) ) C_ ( 1 ( ball ` ( abs o. - ) ) 1 ) /\ ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) -> ( ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ) ) |
227 |
207 222 225 226
|
mp3an2i |
|- ( A e. CC -> ( ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ) ) |
228 |
220 227
|
mpbid |
|- ( A e. CC -> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ) |
229 |
|
blcntr |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ ( 1 / ( ( abs ` A ) + 1 ) ) e. RR+ ) -> 0 e. ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) ) |
230 |
30 31 40 229
|
mp3an2i |
|- ( A e. CC -> 0 e. ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) ) |
231 |
230 1
|
eleqtrrdi |
|- ( A e. CC -> 0 e. S ) |
232 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
233 |
207 44 232
|
sylancr |
|- ( A e. CC -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
234 |
|
toponuni |
|- ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
235 |
233 234
|
syl |
|- ( A e. CC -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
236 |
231 235
|
eleqtrd |
|- ( A e. CC -> 0 e. U. ( ( TopOpen ` CCfld ) |`t S ) ) |
237 |
|
eqid |
|- U. ( ( TopOpen ` CCfld ) |`t S ) = U. ( ( TopOpen ` CCfld ) |`t S ) |
238 |
237
|
cncnpi |
|- ( ( ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) /\ 0 e. U. ( ( TopOpen ` CCfld ) |`t S ) ) -> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 0 ) ) |
239 |
228 236 238
|
syl2anc |
|- ( A e. CC -> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 0 ) ) |
240 |
|
cnelprrecn |
|- CC e. { RR , CC } |
241 |
|
logf1o |
|- log : ( CC \ { 0 } ) -1-1-onto-> ran log |
242 |
|
f1of |
|- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log : ( CC \ { 0 } ) --> ran log ) |
243 |
241 242
|
ax-mp |
|- log : ( CC \ { 0 } ) --> ran log |
244 |
|
logrncn |
|- ( x e. ran log -> x e. CC ) |
245 |
244
|
ssriv |
|- ran log C_ CC |
246 |
|
fss |
|- ( ( log : ( CC \ { 0 } ) --> ran log /\ ran log C_ CC ) -> log : ( CC \ { 0 } ) --> CC ) |
247 |
243 245 246
|
mp2an |
|- log : ( CC \ { 0 } ) --> CC |
248 |
|
fssres |
|- ( ( log : ( CC \ { 0 } ) --> CC /\ ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ ( CC \ { 0 } ) ) -> ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> CC ) |
249 |
247 93 248
|
mp2an |
|- ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> CC |
250 |
|
blcntr |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. CC /\ 1 e. RR+ ) -> 1 e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
251 |
30 84 135 250
|
mp3an |
|- 1 e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |
252 |
|
ovex |
|- ( 1 / y ) e. _V |
253 |
89
|
dvlog2 |
|- ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) = ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) |
254 |
252 253
|
dmmpti |
|- dom ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) = ( 1 ( ball ` ( abs o. - ) ) 1 ) |
255 |
251 254
|
eleqtrri |
|- 1 e. dom ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) |
256 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) = ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
257 |
253
|
fveq1i |
|- ( ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 1 ) = ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) ` 1 ) |
258 |
|
oveq2 |
|- ( y = 1 -> ( 1 / y ) = ( 1 / 1 ) ) |
259 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
260 |
258 259
|
eqtrdi |
|- ( y = 1 -> ( 1 / y ) = 1 ) |
261 |
|
eqid |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) = ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) |
262 |
|
1ex |
|- 1 e. _V |
263 |
260 261 262
|
fvmpt |
|- ( 1 e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) ` 1 ) = 1 ) |
264 |
251 263
|
ax-mp |
|- ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) ` 1 ) = 1 |
265 |
257 264
|
eqtr2i |
|- 1 = ( ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 1 ) |
266 |
265
|
a1i |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> 1 = ( ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 1 ) ) |
267 |
|
fvres |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) = ( log ` y ) ) |
268 |
|
fvres |
|- ( 1 e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) = ( log ` 1 ) ) |
269 |
251 268
|
mp1i |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) = ( log ` 1 ) ) |
270 |
|
log1 |
|- ( log ` 1 ) = 0 |
271 |
269 270
|
eqtrdi |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) = 0 ) |
272 |
267 271
|
oveq12d |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) - ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) ) = ( ( log ` y ) - 0 ) ) |
273 |
93
|
sseli |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> y e. ( CC \ { 0 } ) ) |
274 |
|
eldifsn |
|- ( y e. ( CC \ { 0 } ) <-> ( y e. CC /\ y =/= 0 ) ) |
275 |
273 274
|
sylib |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( y e. CC /\ y =/= 0 ) ) |
276 |
|
logcl |
|- ( ( y e. CC /\ y =/= 0 ) -> ( log ` y ) e. CC ) |
277 |
275 276
|
syl |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( log ` y ) e. CC ) |
278 |
277
|
subid1d |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log ` y ) - 0 ) = ( log ` y ) ) |
279 |
272 278
|
eqtr2d |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( log ` y ) = ( ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) - ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) ) ) |
280 |
279
|
oveq1d |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log ` y ) / ( y - 1 ) ) = ( ( ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) - ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) ) / ( y - 1 ) ) ) |
281 |
266 280
|
ifeq12d |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) = if ( y = 1 , ( ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 1 ) , ( ( ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) - ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) ) / ( y - 1 ) ) ) ) |
282 |
281
|
mpteq2ia |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) = ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , ( ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 1 ) , ( ( ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) - ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) ) / ( y - 1 ) ) ) ) |
283 |
256 206 282
|
dvcnp |
|- ( ( ( CC e. { RR , CC } /\ ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> CC /\ ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) /\ 1 e. dom ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ) -> ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` 1 ) ) |
284 |
255 283
|
mpan2 |
|- ( ( CC e. { RR , CC } /\ ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> CC /\ ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) -> ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` 1 ) ) |
285 |
240 249 224 284
|
mp3an |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` 1 ) |
286 |
|
oveq2 |
|- ( x = 0 -> ( A x. x ) = ( A x. 0 ) ) |
287 |
286
|
oveq2d |
|- ( x = 0 -> ( 1 + ( A x. x ) ) = ( 1 + ( A x. 0 ) ) ) |
288 |
|
eqid |
|- ( x e. S |-> ( 1 + ( A x. x ) ) ) = ( x e. S |-> ( 1 + ( A x. x ) ) ) |
289 |
|
ovex |
|- ( 1 + ( A x. 0 ) ) e. _V |
290 |
287 288 289
|
fvmpt |
|- ( 0 e. S -> ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) = ( 1 + ( A x. 0 ) ) ) |
291 |
231 290
|
syl |
|- ( A e. CC -> ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) = ( 1 + ( A x. 0 ) ) ) |
292 |
|
mul01 |
|- ( A e. CC -> ( A x. 0 ) = 0 ) |
293 |
292
|
oveq2d |
|- ( A e. CC -> ( 1 + ( A x. 0 ) ) = ( 1 + 0 ) ) |
294 |
293 59
|
eqtrdi |
|- ( A e. CC -> ( 1 + ( A x. 0 ) ) = 1 ) |
295 |
291 294
|
eqtrd |
|- ( A e. CC -> ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) = 1 ) |
296 |
295
|
fveq2d |
|- ( A e. CC -> ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) ) = ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` 1 ) ) |
297 |
285 296
|
eleqtrrid |
|- ( A e. CC -> ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) ) ) |
298 |
|
cnpco |
|- ( ( ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 0 ) /\ ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) ) ) -> ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) o. ( x e. S |-> ( 1 + ( A x. x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
299 |
239 297 298
|
syl2anc |
|- ( A e. CC -> ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) o. ( x e. S |-> ( 1 + ( A x. x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
300 |
204 299
|
eqeltrrd |
|- ( A e. CC -> ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
301 |
208 208 211
|
cnmptc |
|- ( A e. CC -> ( y e. CC |-> A ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
302 |
208
|
cnmptid |
|- ( A e. CC -> ( y e. CC |-> y ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
303 |
208 301 302 215
|
cnmpt12f |
|- ( A e. CC -> ( y e. CC |-> ( A x. y ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
304 |
|
efcn |
|- exp e. ( CC -cn-> CC ) |
305 |
206
|
cncfcn1 |
|- ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
306 |
304 305
|
eleqtri |
|- exp e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
307 |
306
|
a1i |
|- ( A e. CC -> exp e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
308 |
208 303 307
|
cnmpt11f |
|- ( A e. CC -> ( y e. CC |-> ( exp ` ( A x. y ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
309 |
177
|
fmpttd |
|- ( A e. CC -> ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) : S --> CC ) |
310 |
309 231
|
ffvelrnd |
|- ( A e. CC -> ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ` 0 ) e. CC ) |
311 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
312 |
311
|
cncnpi |
|- ( ( ( y e. CC |-> ( exp ` ( A x. y ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) /\ ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ` 0 ) e. CC ) -> ( y e. CC |-> ( exp ` ( A x. y ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ` 0 ) ) ) |
313 |
308 310 312
|
syl2anc |
|- ( A e. CC -> ( y e. CC |-> ( exp ` ( A x. y ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ` 0 ) ) ) |
314 |
|
cnpco |
|- ( ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) /\ ( y e. CC |-> ( exp ` ( A x. y ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ` 0 ) ) ) -> ( ( y e. CC |-> ( exp ` ( A x. y ) ) ) o. ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
315 |
300 313 314
|
syl2anc |
|- ( A e. CC -> ( ( y e. CC |-> ( exp ` ( A x. y ) ) ) o. ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
316 |
189 315
|
eqeltrd |
|- ( A e. CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` S ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
317 |
206
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
318 |
317
|
a1i |
|- ( A e. CC -> ( TopOpen ` CCfld ) e. Top ) |
319 |
206
|
cnfldtopn |
|- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
320 |
319
|
blopn |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ ( 1 / ( ( abs ` A ) + 1 ) ) e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) e. ( TopOpen ` CCfld ) ) |
321 |
30 31 41 320
|
mp3an2i |
|- ( A e. CC -> ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) e. ( TopOpen ` CCfld ) ) |
322 |
1 321
|
eqeltrid |
|- ( A e. CC -> S e. ( TopOpen ` CCfld ) ) |
323 |
|
isopn3i |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ S e. ( TopOpen ` CCfld ) ) -> ( ( int ` ( TopOpen ` CCfld ) ) ` S ) = S ) |
324 |
317 322 323
|
sylancr |
|- ( A e. CC -> ( ( int ` ( TopOpen ` CCfld ) ) ` S ) = S ) |
325 |
231 324
|
eleqtrrd |
|- ( A e. CC -> 0 e. ( ( int ` ( TopOpen ` CCfld ) ) ` S ) ) |
326 |
|
efcl |
|- ( A e. CC -> ( exp ` A ) e. CC ) |
327 |
326
|
ad2antrr |
|- ( ( ( A e. CC /\ x e. CC ) /\ x = 0 ) -> ( exp ` A ) e. CC ) |
328 |
84 15 86
|
sylancr |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( 1 + ( A x. x ) ) e. CC ) |
329 |
328 49
|
cxpcld |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) e. CC ) |
330 |
327 329
|
ifclda |
|- ( ( A e. CC /\ x e. CC ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) e. CC ) |
331 |
330
|
fmpttd |
|- ( A e. CC -> ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) : CC --> CC ) |
332 |
311 311
|
cnprest |
|- ( ( ( ( TopOpen ` CCfld ) e. Top /\ S C_ CC ) /\ ( 0 e. ( ( int ` ( TopOpen ` CCfld ) ) ` S ) /\ ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) : CC --> CC ) ) -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` 0 ) <-> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` S ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) ) |
333 |
318 44 325 331 332
|
syl22anc |
|- ( A e. CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` 0 ) <-> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` S ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) ) |
334 |
316 333
|
mpbird |
|- ( A e. CC -> ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
335 |
311
|
cnpresti |
|- ( ( ( 0 [,) +oo ) C_ CC /\ 0 e. ( 0 [,) +oo ) /\ ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` ( 0 [,) +oo ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
336 |
4 27 334 335
|
mp3an2i |
|- ( A e. CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` ( 0 [,) +oo ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
337 |
25 336
|
eqeltrd |
|- ( A e. CC -> ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
338 |
|
simpl |
|- ( ( A e. CC /\ k e. RR+ ) -> A e. CC ) |
339 |
|
rpcn |
|- ( k e. RR+ -> k e. CC ) |
340 |
339
|
adantl |
|- ( ( A e. CC /\ k e. RR+ ) -> k e. CC ) |
341 |
|
rpne0 |
|- ( k e. RR+ -> k =/= 0 ) |
342 |
341
|
adantl |
|- ( ( A e. CC /\ k e. RR+ ) -> k =/= 0 ) |
343 |
338 340 342
|
divcld |
|- ( ( A e. CC /\ k e. RR+ ) -> ( A / k ) e. CC ) |
344 |
|
addcl |
|- ( ( 1 e. CC /\ ( A / k ) e. CC ) -> ( 1 + ( A / k ) ) e. CC ) |
345 |
84 343 344
|
sylancr |
|- ( ( A e. CC /\ k e. RR+ ) -> ( 1 + ( A / k ) ) e. CC ) |
346 |
345 340
|
cxpcld |
|- ( ( A e. CC /\ k e. RR+ ) -> ( ( 1 + ( A / k ) ) ^c k ) e. CC ) |
347 |
|
oveq2 |
|- ( k = ( 1 / x ) -> ( A / k ) = ( A / ( 1 / x ) ) ) |
348 |
347
|
oveq2d |
|- ( k = ( 1 / x ) -> ( 1 + ( A / k ) ) = ( 1 + ( A / ( 1 / x ) ) ) ) |
349 |
|
id |
|- ( k = ( 1 / x ) -> k = ( 1 / x ) ) |
350 |
348 349
|
oveq12d |
|- ( k = ( 1 / x ) -> ( ( 1 + ( A / k ) ) ^c k ) = ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) |
351 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) = ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) |
352 |
326 346 350 206 351
|
rlimcnp3 |
|- ( A e. CC -> ( ( k e. RR+ |-> ( ( 1 + ( A / k ) ) ^c k ) ) ~~>r ( exp ` A ) <-> ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) ) |
353 |
337 352
|
mpbird |
|- ( A e. CC -> ( k e. RR+ |-> ( ( 1 + ( A / k ) ) ^c k ) ) ~~>r ( exp ` A ) ) |