Step |
Hyp |
Ref |
Expression |
1 |
|
efrlim.1 |
|- S = ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) |
2 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
3 |
|
ax-resscn |
|- RR C_ CC |
4 |
2 3
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
5 |
4
|
sseli |
|- ( x e. ( 0 [,) +oo ) -> x e. CC ) |
6 |
|
simpll |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> A e. CC ) |
7 |
|
1cnd |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> 1 e. CC ) |
8 |
|
simplr |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> x e. CC ) |
9 |
|
ax-1ne0 |
|- 1 =/= 0 |
10 |
9
|
a1i |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> 1 =/= 0 ) |
11 |
|
simpr |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> -. x = 0 ) |
12 |
11
|
neqned |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> x =/= 0 ) |
13 |
6 7 8 10 12
|
divdiv2d |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( A / ( 1 / x ) ) = ( ( A x. x ) / 1 ) ) |
14 |
|
mulcl |
|- ( ( A e. CC /\ x e. CC ) -> ( A x. x ) e. CC ) |
15 |
14
|
adantr |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( A x. x ) e. CC ) |
16 |
15
|
div1d |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( ( A x. x ) / 1 ) = ( A x. x ) ) |
17 |
13 16
|
eqtrd |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( A / ( 1 / x ) ) = ( A x. x ) ) |
18 |
17
|
oveq2d |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( 1 + ( A / ( 1 / x ) ) ) = ( 1 + ( A x. x ) ) ) |
19 |
18
|
oveq1d |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) = ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) |
20 |
19
|
ifeq2da |
|- ( ( A e. CC /\ x e. CC ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) = if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |
21 |
5 20
|
sylan2 |
|- ( ( A e. CC /\ x e. ( 0 [,) +oo ) ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) = if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |
22 |
21
|
mpteq2dva |
|- ( A e. CC -> ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) ) = ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) ) |
23 |
|
resmpt |
|- ( ( 0 [,) +oo ) C_ CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` ( 0 [,) +oo ) ) = ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) ) |
24 |
4 23
|
ax-mp |
|- ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` ( 0 [,) +oo ) ) = ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |
25 |
22 24
|
eqtr4di |
|- ( A e. CC -> ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) ) = ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` ( 0 [,) +oo ) ) ) |
26 |
|
0e0icopnf |
|- 0 e. ( 0 [,) +oo ) |
27 |
26
|
a1i |
|- ( A e. CC -> 0 e. ( 0 [,) +oo ) ) |
28 |
|
eqeq2 |
|- ( ( exp ` ( A x. 1 ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) -> ( if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. 1 ) ) <-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) ) |
29 |
|
eqeq2 |
|- ( ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) -> ( if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) <-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) ) |
30 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
31 |
|
0cnd |
|- ( A e. CC -> 0 e. CC ) |
32 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
33 |
|
peano2re |
|- ( ( abs ` A ) e. RR -> ( ( abs ` A ) + 1 ) e. RR ) |
34 |
32 33
|
syl |
|- ( A e. CC -> ( ( abs ` A ) + 1 ) e. RR ) |
35 |
|
0red |
|- ( A e. CC -> 0 e. RR ) |
36 |
|
absge0 |
|- ( A e. CC -> 0 <_ ( abs ` A ) ) |
37 |
32
|
ltp1d |
|- ( A e. CC -> ( abs ` A ) < ( ( abs ` A ) + 1 ) ) |
38 |
35 32 34 36 37
|
lelttrd |
|- ( A e. CC -> 0 < ( ( abs ` A ) + 1 ) ) |
39 |
34 38
|
elrpd |
|- ( A e. CC -> ( ( abs ` A ) + 1 ) e. RR+ ) |
40 |
39
|
rpreccld |
|- ( A e. CC -> ( 1 / ( ( abs ` A ) + 1 ) ) e. RR+ ) |
41 |
40
|
rpxrd |
|- ( A e. CC -> ( 1 / ( ( abs ` A ) + 1 ) ) e. RR* ) |
42 |
|
blssm |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ ( 1 / ( ( abs ` A ) + 1 ) ) e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) C_ CC ) |
43 |
30 31 41 42
|
mp3an2i |
|- ( A e. CC -> ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) C_ CC ) |
44 |
1 43
|
eqsstrid |
|- ( A e. CC -> S C_ CC ) |
45 |
44
|
sselda |
|- ( ( A e. CC /\ x e. S ) -> x e. CC ) |
46 |
|
mul0or |
|- ( ( A e. CC /\ x e. CC ) -> ( ( A x. x ) = 0 <-> ( A = 0 \/ x = 0 ) ) ) |
47 |
45 46
|
syldan |
|- ( ( A e. CC /\ x e. S ) -> ( ( A x. x ) = 0 <-> ( A = 0 \/ x = 0 ) ) ) |
48 |
8 12
|
reccld |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( 1 / x ) e. CC ) |
49 |
45 48
|
syldanl |
|- ( ( ( A e. CC /\ x e. S ) /\ -. x = 0 ) -> ( 1 / x ) e. CC ) |
50 |
49
|
adantlr |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( 1 / x ) e. CC ) |
51 |
50
|
1cxpd |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( 1 ^c ( 1 / x ) ) = 1 ) |
52 |
|
simplr |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> A = 0 ) |
53 |
52
|
oveq1d |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( A x. x ) = ( 0 x. x ) ) |
54 |
45
|
ad2antrr |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> x e. CC ) |
55 |
54
|
mul02d |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( 0 x. x ) = 0 ) |
56 |
53 55
|
eqtrd |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( A x. x ) = 0 ) |
57 |
56
|
oveq2d |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( 1 + ( A x. x ) ) = ( 1 + 0 ) ) |
58 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
59 |
57 58
|
eqtrdi |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( 1 + ( A x. x ) ) = 1 ) |
60 |
59
|
oveq1d |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) = ( 1 ^c ( 1 / x ) ) ) |
61 |
52
|
fveq2d |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( exp ` A ) = ( exp ` 0 ) ) |
62 |
|
ef0 |
|- ( exp ` 0 ) = 1 |
63 |
61 62
|
eqtrdi |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( exp ` A ) = 1 ) |
64 |
51 60 63
|
3eqtr4d |
|- ( ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) /\ -. x = 0 ) -> ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) = ( exp ` A ) ) |
65 |
64
|
ifeq2da |
|- ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = if ( x = 0 , ( exp ` A ) , ( exp ` A ) ) ) |
66 |
|
ifid |
|- if ( x = 0 , ( exp ` A ) , ( exp ` A ) ) = ( exp ` A ) |
67 |
65 66
|
eqtrdi |
|- ( ( ( A e. CC /\ x e. S ) /\ A = 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` A ) ) |
68 |
|
iftrue |
|- ( x = 0 -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` A ) ) |
69 |
68
|
adantl |
|- ( ( ( A e. CC /\ x e. S ) /\ x = 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` A ) ) |
70 |
67 69
|
jaodan |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A = 0 \/ x = 0 ) ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` A ) ) |
71 |
|
mulrid |
|- ( A e. CC -> ( A x. 1 ) = A ) |
72 |
71
|
ad2antrr |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A = 0 \/ x = 0 ) ) -> ( A x. 1 ) = A ) |
73 |
72
|
fveq2d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A = 0 \/ x = 0 ) ) -> ( exp ` ( A x. 1 ) ) = ( exp ` A ) ) |
74 |
70 73
|
eqtr4d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A = 0 \/ x = 0 ) ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. 1 ) ) ) |
75 |
47 74
|
sylbida |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A x. x ) = 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. 1 ) ) ) |
76 |
|
mulne0b |
|- ( ( A e. CC /\ x e. CC ) -> ( ( A =/= 0 /\ x =/= 0 ) <-> ( A x. x ) =/= 0 ) ) |
77 |
45 76
|
syldan |
|- ( ( A e. CC /\ x e. S ) -> ( ( A =/= 0 /\ x =/= 0 ) <-> ( A x. x ) =/= 0 ) ) |
78 |
|
df-ne |
|- ( ( A x. x ) =/= 0 <-> -. ( A x. x ) = 0 ) |
79 |
77 78
|
bitrdi |
|- ( ( A e. CC /\ x e. S ) -> ( ( A =/= 0 /\ x =/= 0 ) <-> -. ( A x. x ) = 0 ) ) |
80 |
|
simprr |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> x =/= 0 ) |
81 |
80
|
neneqd |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> -. x = 0 ) |
82 |
81
|
iffalsed |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) |
83 |
|
ax-1cn |
|- 1 e. CC |
84 |
45 14
|
syldan |
|- ( ( A e. CC /\ x e. S ) -> ( A x. x ) e. CC ) |
85 |
|
addcl |
|- ( ( 1 e. CC /\ ( A x. x ) e. CC ) -> ( 1 + ( A x. x ) ) e. CC ) |
86 |
83 84 85
|
sylancr |
|- ( ( A e. CC /\ x e. S ) -> ( 1 + ( A x. x ) ) e. CC ) |
87 |
86
|
adantr |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( 1 + ( A x. x ) ) e. CC ) |
88 |
|
eqid |
|- ( 1 ( ball ` ( abs o. - ) ) 1 ) = ( 1 ( ball ` ( abs o. - ) ) 1 ) |
89 |
88
|
dvlog2lem |
|- ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ ( CC \ ( -oo (,] 0 ) ) |
90 |
|
eqid |
|- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
91 |
90
|
logdmss |
|- ( CC \ ( -oo (,] 0 ) ) C_ ( CC \ { 0 } ) |
92 |
89 91
|
sstri |
|- ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ ( CC \ { 0 } ) |
93 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
94 |
93
|
cnmetdval |
|- ( ( ( 1 + ( A x. x ) ) e. CC /\ 1 e. CC ) -> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) = ( abs ` ( ( 1 + ( A x. x ) ) - 1 ) ) ) |
95 |
86 83 94
|
sylancl |
|- ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) = ( abs ` ( ( 1 + ( A x. x ) ) - 1 ) ) ) |
96 |
|
pncan2 |
|- ( ( 1 e. CC /\ ( A x. x ) e. CC ) -> ( ( 1 + ( A x. x ) ) - 1 ) = ( A x. x ) ) |
97 |
83 84 96
|
sylancr |
|- ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) - 1 ) = ( A x. x ) ) |
98 |
97
|
fveq2d |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` ( ( 1 + ( A x. x ) ) - 1 ) ) = ( abs ` ( A x. x ) ) ) |
99 |
95 98
|
eqtrd |
|- ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) = ( abs ` ( A x. x ) ) ) |
100 |
84
|
abscld |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` ( A x. x ) ) e. RR ) |
101 |
34
|
adantr |
|- ( ( A e. CC /\ x e. S ) -> ( ( abs ` A ) + 1 ) e. RR ) |
102 |
45
|
abscld |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` x ) e. RR ) |
103 |
101 102
|
remulcld |
|- ( ( A e. CC /\ x e. S ) -> ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) e. RR ) |
104 |
|
1red |
|- ( ( A e. CC /\ x e. S ) -> 1 e. RR ) |
105 |
|
absmul |
|- ( ( A e. CC /\ x e. CC ) -> ( abs ` ( A x. x ) ) = ( ( abs ` A ) x. ( abs ` x ) ) ) |
106 |
45 105
|
syldan |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` ( A x. x ) ) = ( ( abs ` A ) x. ( abs ` x ) ) ) |
107 |
32
|
adantr |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` A ) e. RR ) |
108 |
107 33
|
syl |
|- ( ( A e. CC /\ x e. S ) -> ( ( abs ` A ) + 1 ) e. RR ) |
109 |
45
|
absge0d |
|- ( ( A e. CC /\ x e. S ) -> 0 <_ ( abs ` x ) ) |
110 |
107
|
lep1d |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` A ) <_ ( ( abs ` A ) + 1 ) ) |
111 |
107 108 102 109 110
|
lemul1ad |
|- ( ( A e. CC /\ x e. S ) -> ( ( abs ` A ) x. ( abs ` x ) ) <_ ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) ) |
112 |
106 111
|
eqbrtrd |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` ( A x. x ) ) <_ ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) ) |
113 |
|
0cn |
|- 0 e. CC |
114 |
93
|
cnmetdval |
|- ( ( x e. CC /\ 0 e. CC ) -> ( x ( abs o. - ) 0 ) = ( abs ` ( x - 0 ) ) ) |
115 |
45 113 114
|
sylancl |
|- ( ( A e. CC /\ x e. S ) -> ( x ( abs o. - ) 0 ) = ( abs ` ( x - 0 ) ) ) |
116 |
45
|
subid1d |
|- ( ( A e. CC /\ x e. S ) -> ( x - 0 ) = x ) |
117 |
116
|
fveq2d |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` ( x - 0 ) ) = ( abs ` x ) ) |
118 |
115 117
|
eqtrd |
|- ( ( A e. CC /\ x e. S ) -> ( x ( abs o. - ) 0 ) = ( abs ` x ) ) |
119 |
|
simpr |
|- ( ( A e. CC /\ x e. S ) -> x e. S ) |
120 |
119 1
|
eleqtrdi |
|- ( ( A e. CC /\ x e. S ) -> x e. ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) ) |
121 |
30
|
a1i |
|- ( ( A e. CC /\ x e. S ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
122 |
41
|
adantr |
|- ( ( A e. CC /\ x e. S ) -> ( 1 / ( ( abs ` A ) + 1 ) ) e. RR* ) |
123 |
|
0cnd |
|- ( ( A e. CC /\ x e. S ) -> 0 e. CC ) |
124 |
|
elbl3 |
|- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ ( 1 / ( ( abs ` A ) + 1 ) ) e. RR* ) /\ ( 0 e. CC /\ x e. CC ) ) -> ( x e. ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) <-> ( x ( abs o. - ) 0 ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) ) |
125 |
121 122 123 45 124
|
syl22anc |
|- ( ( A e. CC /\ x e. S ) -> ( x e. ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) <-> ( x ( abs o. - ) 0 ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) ) |
126 |
120 125
|
mpbid |
|- ( ( A e. CC /\ x e. S ) -> ( x ( abs o. - ) 0 ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) |
127 |
118 126
|
eqbrtrrd |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` x ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) |
128 |
38
|
adantr |
|- ( ( A e. CC /\ x e. S ) -> 0 < ( ( abs ` A ) + 1 ) ) |
129 |
|
ltmuldiv2 |
|- ( ( ( abs ` x ) e. RR /\ 1 e. RR /\ ( ( ( abs ` A ) + 1 ) e. RR /\ 0 < ( ( abs ` A ) + 1 ) ) ) -> ( ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) < 1 <-> ( abs ` x ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) ) |
130 |
102 104 108 128 129
|
syl112anc |
|- ( ( A e. CC /\ x e. S ) -> ( ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) < 1 <-> ( abs ` x ) < ( 1 / ( ( abs ` A ) + 1 ) ) ) ) |
131 |
127 130
|
mpbird |
|- ( ( A e. CC /\ x e. S ) -> ( ( ( abs ` A ) + 1 ) x. ( abs ` x ) ) < 1 ) |
132 |
100 103 104 112 131
|
lelttrd |
|- ( ( A e. CC /\ x e. S ) -> ( abs ` ( A x. x ) ) < 1 ) |
133 |
99 132
|
eqbrtrd |
|- ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) < 1 ) |
134 |
|
1rp |
|- 1 e. RR+ |
135 |
|
rpxr |
|- ( 1 e. RR+ -> 1 e. RR* ) |
136 |
134 135
|
mp1i |
|- ( ( A e. CC /\ x e. S ) -> 1 e. RR* ) |
137 |
|
1cnd |
|- ( ( A e. CC /\ x e. S ) -> 1 e. CC ) |
138 |
|
elbl3 |
|- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 1 e. CC /\ ( 1 + ( A x. x ) ) e. CC ) ) -> ( ( 1 + ( A x. x ) ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) < 1 ) ) |
139 |
121 136 137 86 138
|
syl22anc |
|- ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( ( 1 + ( A x. x ) ) ( abs o. - ) 1 ) < 1 ) ) |
140 |
133 139
|
mpbird |
|- ( ( A e. CC /\ x e. S ) -> ( 1 + ( A x. x ) ) e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
141 |
92 140
|
sselid |
|- ( ( A e. CC /\ x e. S ) -> ( 1 + ( A x. x ) ) e. ( CC \ { 0 } ) ) |
142 |
|
eldifsni |
|- ( ( 1 + ( A x. x ) ) e. ( CC \ { 0 } ) -> ( 1 + ( A x. x ) ) =/= 0 ) |
143 |
141 142
|
syl |
|- ( ( A e. CC /\ x e. S ) -> ( 1 + ( A x. x ) ) =/= 0 ) |
144 |
143
|
adantr |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( 1 + ( A x. x ) ) =/= 0 ) |
145 |
45
|
adantr |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> x e. CC ) |
146 |
145 80
|
reccld |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( 1 / x ) e. CC ) |
147 |
87 144 146
|
cxpefd |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) = ( exp ` ( ( 1 / x ) x. ( log ` ( 1 + ( A x. x ) ) ) ) ) ) |
148 |
86 143
|
logcld |
|- ( ( A e. CC /\ x e. S ) -> ( log ` ( 1 + ( A x. x ) ) ) e. CC ) |
149 |
148
|
adantr |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( log ` ( 1 + ( A x. x ) ) ) e. CC ) |
150 |
146 149
|
mulcomd |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( 1 / x ) x. ( log ` ( 1 + ( A x. x ) ) ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) x. ( 1 / x ) ) ) |
151 |
|
simpll |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> A e. CC ) |
152 |
|
simprl |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> A =/= 0 ) |
153 |
151 152
|
dividd |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( A / A ) = 1 ) |
154 |
153
|
oveq1d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( A / A ) / x ) = ( 1 / x ) ) |
155 |
151 151 145 152 80
|
divdiv1d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( A / A ) / x ) = ( A / ( A x. x ) ) ) |
156 |
154 155
|
eqtr3d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( 1 / x ) = ( A / ( A x. x ) ) ) |
157 |
156
|
oveq2d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( log ` ( 1 + ( A x. x ) ) ) x. ( 1 / x ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) x. ( A / ( A x. x ) ) ) ) |
158 |
84
|
adantr |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( A x. x ) e. CC ) |
159 |
77
|
biimpa |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( A x. x ) =/= 0 ) |
160 |
149 151 158 159
|
div12d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( log ` ( 1 + ( A x. x ) ) ) x. ( A / ( A x. x ) ) ) = ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) |
161 |
150 157 160
|
3eqtrd |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( ( 1 / x ) x. ( log ` ( 1 + ( A x. x ) ) ) ) = ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) |
162 |
161
|
fveq2d |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> ( exp ` ( ( 1 / x ) x. ( log ` ( 1 + ( A x. x ) ) ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
163 |
82 147 162
|
3eqtrd |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A =/= 0 /\ x =/= 0 ) ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
164 |
163
|
ex |
|- ( ( A e. CC /\ x e. S ) -> ( ( A =/= 0 /\ x =/= 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) |
165 |
79 164
|
sylbird |
|- ( ( A e. CC /\ x e. S ) -> ( -. ( A x. x ) = 0 -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) |
166 |
165
|
imp |
|- ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
167 |
28 29 75 166
|
ifbothda |
|- ( ( A e. CC /\ x e. S ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) |
168 |
167
|
mpteq2dva |
|- ( A e. CC -> ( x e. S |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) = ( x e. S |-> if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) ) |
169 |
44
|
resmptd |
|- ( A e. CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` S ) = ( x e. S |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) ) |
170 |
|
1cnd |
|- ( ( ( A e. CC /\ x e. S ) /\ ( A x. x ) = 0 ) -> 1 e. CC ) |
171 |
148
|
adantr |
|- ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> ( log ` ( 1 + ( A x. x ) ) ) e. CC ) |
172 |
84
|
adantr |
|- ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> ( A x. x ) e. CC ) |
173 |
|
simpr |
|- ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> -. ( A x. x ) = 0 ) |
174 |
173
|
neqned |
|- ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> ( A x. x ) =/= 0 ) |
175 |
171 172 174
|
divcld |
|- ( ( ( A e. CC /\ x e. S ) /\ -. ( A x. x ) = 0 ) -> ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) e. CC ) |
176 |
170 175
|
ifclda |
|- ( ( A e. CC /\ x e. S ) -> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) e. CC ) |
177 |
|
eqidd |
|- ( A e. CC -> ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) = ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
178 |
|
eqidd |
|- ( A e. CC -> ( y e. CC |-> ( exp ` ( A x. y ) ) ) = ( y e. CC |-> ( exp ` ( A x. y ) ) ) ) |
179 |
|
oveq2 |
|- ( y = if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) -> ( A x. y ) = ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
180 |
179
|
fveq2d |
|- ( y = if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) -> ( exp ` ( A x. y ) ) = ( exp ` ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) |
181 |
|
oveq2 |
|- ( if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) = 1 -> ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) = ( A x. 1 ) ) |
182 |
181
|
fveq2d |
|- ( if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) = 1 -> ( exp ` ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) = ( exp ` ( A x. 1 ) ) ) |
183 |
|
oveq2 |
|- ( if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) -> ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) = ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) |
184 |
183
|
fveq2d |
|- ( if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) -> ( exp ` ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) = ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
185 |
182 184
|
ifsb |
|- ( exp ` ( A x. if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
186 |
180 185
|
eqtrdi |
|- ( y = if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) -> ( exp ` ( A x. y ) ) = if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) |
187 |
176 177 178 186
|
fmptco |
|- ( A e. CC -> ( ( y e. CC |-> ( exp ` ( A x. y ) ) ) o. ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) = ( x e. S |-> if ( ( A x. x ) = 0 , ( exp ` ( A x. 1 ) ) , ( exp ` ( A x. ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) ) |
188 |
168 169 187
|
3eqtr4d |
|- ( A e. CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` S ) = ( ( y e. CC |-> ( exp ` ( A x. y ) ) ) o. ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) ) |
189 |
|
eqidd |
|- ( A e. CC -> ( x e. S |-> ( 1 + ( A x. x ) ) ) = ( x e. S |-> ( 1 + ( A x. x ) ) ) ) |
190 |
|
eqidd |
|- ( A e. CC -> ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) = ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) ) |
191 |
|
eqeq1 |
|- ( y = ( 1 + ( A x. x ) ) -> ( y = 1 <-> ( 1 + ( A x. x ) ) = 1 ) ) |
192 |
|
fveq2 |
|- ( y = ( 1 + ( A x. x ) ) -> ( log ` y ) = ( log ` ( 1 + ( A x. x ) ) ) ) |
193 |
|
oveq1 |
|- ( y = ( 1 + ( A x. x ) ) -> ( y - 1 ) = ( ( 1 + ( A x. x ) ) - 1 ) ) |
194 |
192 193
|
oveq12d |
|- ( y = ( 1 + ( A x. x ) ) -> ( ( log ` y ) / ( y - 1 ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) ) |
195 |
191 194
|
ifbieq2d |
|- ( y = ( 1 + ( A x. x ) ) -> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) = if ( ( 1 + ( A x. x ) ) = 1 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) ) ) |
196 |
140 189 190 195
|
fmptco |
|- ( A e. CC -> ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) o. ( x e. S |-> ( 1 + ( A x. x ) ) ) ) = ( x e. S |-> if ( ( 1 + ( A x. x ) ) = 1 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) ) ) ) |
197 |
58
|
eqeq2i |
|- ( ( 1 + ( A x. x ) ) = ( 1 + 0 ) <-> ( 1 + ( A x. x ) ) = 1 ) |
198 |
137 84 123
|
addcand |
|- ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) = ( 1 + 0 ) <-> ( A x. x ) = 0 ) ) |
199 |
197 198
|
bitr3id |
|- ( ( A e. CC /\ x e. S ) -> ( ( 1 + ( A x. x ) ) = 1 <-> ( A x. x ) = 0 ) ) |
200 |
97
|
oveq2d |
|- ( ( A e. CC /\ x e. S ) -> ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) = ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) |
201 |
199 200
|
ifbieq2d |
|- ( ( A e. CC /\ x e. S ) -> if ( ( 1 + ( A x. x ) ) = 1 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) ) = if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) |
202 |
201
|
mpteq2dva |
|- ( A e. CC -> ( x e. S |-> if ( ( 1 + ( A x. x ) ) = 1 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( ( 1 + ( A x. x ) ) - 1 ) ) ) ) = ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
203 |
196 202
|
eqtrd |
|- ( A e. CC -> ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) o. ( x e. S |-> ( 1 + ( A x. x ) ) ) ) = ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) |
204 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
205 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
206 |
205
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
207 |
206
|
a1i |
|- ( A e. CC -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
208 |
|
1cnd |
|- ( A e. CC -> 1 e. CC ) |
209 |
207 207 208
|
cnmptc |
|- ( A e. CC -> ( x e. CC |-> 1 ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
210 |
|
id |
|- ( A e. CC -> A e. CC ) |
211 |
207 207 210
|
cnmptc |
|- ( A e. CC -> ( x e. CC |-> A ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
212 |
207
|
cnmptid |
|- ( A e. CC -> ( x e. CC |-> x ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
213 |
205
|
mpomulcn |
|- ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
214 |
213
|
a1i |
|- ( A e. CC -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
215 |
|
oveq12 |
|- ( ( u = A /\ v = x ) -> ( u x. v ) = ( A x. x ) ) |
216 |
207 211 212 207 207 214 215
|
cnmpt12 |
|- ( A e. CC -> ( x e. CC |-> ( A x. x ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
217 |
205
|
addcn |
|- + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
218 |
217
|
a1i |
|- ( A e. CC -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
219 |
207 209 216 218
|
cnmpt12f |
|- ( A e. CC -> ( x e. CC |-> ( 1 + ( A x. x ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
220 |
204 207 44 219
|
cnmpt1res |
|- ( A e. CC -> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) ) |
221 |
140
|
fmpttd |
|- ( A e. CC -> ( x e. S |-> ( 1 + ( A x. x ) ) ) : S --> ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
222 |
221
|
frnd |
|- ( A e. CC -> ran ( x e. S |-> ( 1 + ( A x. x ) ) ) C_ ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
223 |
|
difss |
|- ( CC \ { 0 } ) C_ CC |
224 |
92 223
|
sstri |
|- ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC |
225 |
224
|
a1i |
|- ( A e. CC -> ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) |
226 |
|
cnrest2 |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( x e. S |-> ( 1 + ( A x. x ) ) ) C_ ( 1 ( ball ` ( abs o. - ) ) 1 ) /\ ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) -> ( ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ) ) |
227 |
206 222 225 226
|
mp3an2i |
|- ( A e. CC -> ( ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ) ) |
228 |
220 227
|
mpbid |
|- ( A e. CC -> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ) |
229 |
|
blcntr |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ ( 1 / ( ( abs ` A ) + 1 ) ) e. RR+ ) -> 0 e. ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) ) |
230 |
30 31 40 229
|
mp3an2i |
|- ( A e. CC -> 0 e. ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) ) |
231 |
230 1
|
eleqtrrdi |
|- ( A e. CC -> 0 e. S ) |
232 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
233 |
206 44 232
|
sylancr |
|- ( A e. CC -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
234 |
|
toponuni |
|- ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
235 |
233 234
|
syl |
|- ( A e. CC -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
236 |
231 235
|
eleqtrd |
|- ( A e. CC -> 0 e. U. ( ( TopOpen ` CCfld ) |`t S ) ) |
237 |
|
eqid |
|- U. ( ( TopOpen ` CCfld ) |`t S ) = U. ( ( TopOpen ` CCfld ) |`t S ) |
238 |
237
|
cncnpi |
|- ( ( ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( TopOpen ` CCfld ) |`t S ) Cn ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) /\ 0 e. U. ( ( TopOpen ` CCfld ) |`t S ) ) -> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 0 ) ) |
239 |
228 236 238
|
syl2anc |
|- ( A e. CC -> ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 0 ) ) |
240 |
|
cnelprrecn |
|- CC e. { RR , CC } |
241 |
|
logf1o |
|- log : ( CC \ { 0 } ) -1-1-onto-> ran log |
242 |
|
f1of |
|- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log : ( CC \ { 0 } ) --> ran log ) |
243 |
241 242
|
ax-mp |
|- log : ( CC \ { 0 } ) --> ran log |
244 |
|
logrncn |
|- ( x e. ran log -> x e. CC ) |
245 |
244
|
ssriv |
|- ran log C_ CC |
246 |
|
fss |
|- ( ( log : ( CC \ { 0 } ) --> ran log /\ ran log C_ CC ) -> log : ( CC \ { 0 } ) --> CC ) |
247 |
243 245 246
|
mp2an |
|- log : ( CC \ { 0 } ) --> CC |
248 |
|
fssres |
|- ( ( log : ( CC \ { 0 } ) --> CC /\ ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ ( CC \ { 0 } ) ) -> ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> CC ) |
249 |
247 92 248
|
mp2an |
|- ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> CC |
250 |
|
blcntr |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. CC /\ 1 e. RR+ ) -> 1 e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
251 |
30 83 134 250
|
mp3an |
|- 1 e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |
252 |
|
ovex |
|- ( 1 / y ) e. _V |
253 |
88
|
dvlog2 |
|- ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) = ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) |
254 |
252 253
|
dmmpti |
|- dom ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) = ( 1 ( ball ` ( abs o. - ) ) 1 ) |
255 |
251 254
|
eleqtrri |
|- 1 e. dom ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) |
256 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) = ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) |
257 |
253
|
fveq1i |
|- ( ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 1 ) = ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) ` 1 ) |
258 |
|
oveq2 |
|- ( y = 1 -> ( 1 / y ) = ( 1 / 1 ) ) |
259 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
260 |
258 259
|
eqtrdi |
|- ( y = 1 -> ( 1 / y ) = 1 ) |
261 |
|
eqid |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) = ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) |
262 |
|
1ex |
|- 1 e. _V |
263 |
260 261 262
|
fvmpt |
|- ( 1 e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) ` 1 ) = 1 ) |
264 |
251 263
|
ax-mp |
|- ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> ( 1 / y ) ) ` 1 ) = 1 |
265 |
257 264
|
eqtr2i |
|- 1 = ( ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 1 ) |
266 |
265
|
a1i |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> 1 = ( ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 1 ) ) |
267 |
|
fvres |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) = ( log ` y ) ) |
268 |
|
fvres |
|- ( 1 e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) = ( log ` 1 ) ) |
269 |
251 268
|
mp1i |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) = ( log ` 1 ) ) |
270 |
|
log1 |
|- ( log ` 1 ) = 0 |
271 |
269 270
|
eqtrdi |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) = 0 ) |
272 |
267 271
|
oveq12d |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) - ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) ) = ( ( log ` y ) - 0 ) ) |
273 |
92
|
sseli |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> y e. ( CC \ { 0 } ) ) |
274 |
|
eldifsn |
|- ( y e. ( CC \ { 0 } ) <-> ( y e. CC /\ y =/= 0 ) ) |
275 |
273 274
|
sylib |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( y e. CC /\ y =/= 0 ) ) |
276 |
|
logcl |
|- ( ( y e. CC /\ y =/= 0 ) -> ( log ` y ) e. CC ) |
277 |
275 276
|
syl |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( log ` y ) e. CC ) |
278 |
277
|
subid1d |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log ` y ) - 0 ) = ( log ` y ) ) |
279 |
272 278
|
eqtr2d |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( log ` y ) = ( ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) - ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) ) ) |
280 |
279
|
oveq1d |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> ( ( log ` y ) / ( y - 1 ) ) = ( ( ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) - ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) ) / ( y - 1 ) ) ) |
281 |
266 280
|
ifeq12d |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) = if ( y = 1 , ( ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 1 ) , ( ( ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) - ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) ) / ( y - 1 ) ) ) ) |
282 |
281
|
mpteq2ia |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) = ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , ( ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 1 ) , ( ( ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` y ) - ( ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ` 1 ) ) / ( y - 1 ) ) ) ) |
283 |
256 205 282
|
dvcnp |
|- ( ( ( CC e. { RR , CC } /\ ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> CC /\ ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) /\ 1 e. dom ( CC _D ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ) -> ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` 1 ) ) |
284 |
255 283
|
mpan2 |
|- ( ( CC e. { RR , CC } /\ ( log |` ( 1 ( ball ` ( abs o. - ) ) 1 ) ) : ( 1 ( ball ` ( abs o. - ) ) 1 ) --> CC /\ ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) -> ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` 1 ) ) |
285 |
240 249 224 284
|
mp3an |
|- ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` 1 ) |
286 |
|
oveq2 |
|- ( x = 0 -> ( A x. x ) = ( A x. 0 ) ) |
287 |
286
|
oveq2d |
|- ( x = 0 -> ( 1 + ( A x. x ) ) = ( 1 + ( A x. 0 ) ) ) |
288 |
|
eqid |
|- ( x e. S |-> ( 1 + ( A x. x ) ) ) = ( x e. S |-> ( 1 + ( A x. x ) ) ) |
289 |
|
ovex |
|- ( 1 + ( A x. 0 ) ) e. _V |
290 |
287 288 289
|
fvmpt |
|- ( 0 e. S -> ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) = ( 1 + ( A x. 0 ) ) ) |
291 |
231 290
|
syl |
|- ( A e. CC -> ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) = ( 1 + ( A x. 0 ) ) ) |
292 |
|
mul01 |
|- ( A e. CC -> ( A x. 0 ) = 0 ) |
293 |
292
|
oveq2d |
|- ( A e. CC -> ( 1 + ( A x. 0 ) ) = ( 1 + 0 ) ) |
294 |
293 58
|
eqtrdi |
|- ( A e. CC -> ( 1 + ( A x. 0 ) ) = 1 ) |
295 |
291 294
|
eqtrd |
|- ( A e. CC -> ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) = 1 ) |
296 |
295
|
fveq2d |
|- ( A e. CC -> ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) ) = ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` 1 ) ) |
297 |
285 296
|
eleqtrrid |
|- ( A e. CC -> ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) ) ) |
298 |
|
cnpco |
|- ( ( ( x e. S |-> ( 1 + ( A x. x ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) ) ` 0 ) /\ ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 1 ( ball ` ( abs o. - ) ) 1 ) ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> ( 1 + ( A x. x ) ) ) ` 0 ) ) ) -> ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) o. ( x e. S |-> ( 1 + ( A x. x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
299 |
239 297 298
|
syl2anc |
|- ( A e. CC -> ( ( y e. ( 1 ( ball ` ( abs o. - ) ) 1 ) |-> if ( y = 1 , 1 , ( ( log ` y ) / ( y - 1 ) ) ) ) o. ( x e. S |-> ( 1 + ( A x. x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
300 |
203 299
|
eqeltrrd |
|- ( A e. CC -> ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
301 |
207 207 210
|
cnmptc |
|- ( A e. CC -> ( y e. CC |-> A ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
302 |
207
|
cnmptid |
|- ( A e. CC -> ( y e. CC |-> y ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
303 |
|
oveq12 |
|- ( ( u = A /\ v = y ) -> ( u x. v ) = ( A x. y ) ) |
304 |
207 301 302 207 207 214 303
|
cnmpt12 |
|- ( A e. CC -> ( y e. CC |-> ( A x. y ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
305 |
|
efcn |
|- exp e. ( CC -cn-> CC ) |
306 |
205
|
cncfcn1 |
|- ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
307 |
305 306
|
eleqtri |
|- exp e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
308 |
307
|
a1i |
|- ( A e. CC -> exp e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
309 |
207 304 308
|
cnmpt11f |
|- ( A e. CC -> ( y e. CC |-> ( exp ` ( A x. y ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
310 |
176
|
fmpttd |
|- ( A e. CC -> ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) : S --> CC ) |
311 |
310 231
|
ffvelcdmd |
|- ( A e. CC -> ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ` 0 ) e. CC ) |
312 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
313 |
312
|
cncnpi |
|- ( ( ( y e. CC |-> ( exp ` ( A x. y ) ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) /\ ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ` 0 ) e. CC ) -> ( y e. CC |-> ( exp ` ( A x. y ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ` 0 ) ) ) |
314 |
309 311 313
|
syl2anc |
|- ( A e. CC -> ( y e. CC |-> ( exp ` ( A x. y ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ` 0 ) ) ) |
315 |
|
cnpco |
|- ( ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) /\ ( y e. CC |-> ( exp ` ( A x. y ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` ( ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ` 0 ) ) ) -> ( ( y e. CC |-> ( exp ` ( A x. y ) ) ) o. ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
316 |
300 314 315
|
syl2anc |
|- ( A e. CC -> ( ( y e. CC |-> ( exp ` ( A x. y ) ) ) o. ( x e. S |-> if ( ( A x. x ) = 0 , 1 , ( ( log ` ( 1 + ( A x. x ) ) ) / ( A x. x ) ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
317 |
188 316
|
eqeltrd |
|- ( A e. CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` S ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
318 |
205
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
319 |
318
|
a1i |
|- ( A e. CC -> ( TopOpen ` CCfld ) e. Top ) |
320 |
205
|
cnfldtopn |
|- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
321 |
320
|
blopn |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ ( 1 / ( ( abs ` A ) + 1 ) ) e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) e. ( TopOpen ` CCfld ) ) |
322 |
30 31 41 321
|
mp3an2i |
|- ( A e. CC -> ( 0 ( ball ` ( abs o. - ) ) ( 1 / ( ( abs ` A ) + 1 ) ) ) e. ( TopOpen ` CCfld ) ) |
323 |
1 322
|
eqeltrid |
|- ( A e. CC -> S e. ( TopOpen ` CCfld ) ) |
324 |
|
isopn3i |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ S e. ( TopOpen ` CCfld ) ) -> ( ( int ` ( TopOpen ` CCfld ) ) ` S ) = S ) |
325 |
318 323 324
|
sylancr |
|- ( A e. CC -> ( ( int ` ( TopOpen ` CCfld ) ) ` S ) = S ) |
326 |
231 325
|
eleqtrrd |
|- ( A e. CC -> 0 e. ( ( int ` ( TopOpen ` CCfld ) ) ` S ) ) |
327 |
|
efcl |
|- ( A e. CC -> ( exp ` A ) e. CC ) |
328 |
327
|
ad2antrr |
|- ( ( ( A e. CC /\ x e. CC ) /\ x = 0 ) -> ( exp ` A ) e. CC ) |
329 |
83 15 85
|
sylancr |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( 1 + ( A x. x ) ) e. CC ) |
330 |
329 48
|
cxpcld |
|- ( ( ( A e. CC /\ x e. CC ) /\ -. x = 0 ) -> ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) e. CC ) |
331 |
328 330
|
ifclda |
|- ( ( A e. CC /\ x e. CC ) -> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) e. CC ) |
332 |
331
|
fmpttd |
|- ( A e. CC -> ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) : CC --> CC ) |
333 |
312 312
|
cnprest |
|- ( ( ( ( TopOpen ` CCfld ) e. Top /\ S C_ CC ) /\ ( 0 e. ( ( int ` ( TopOpen ` CCfld ) ) ` S ) /\ ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) : CC --> CC ) ) -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` 0 ) <-> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` S ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) ) |
334 |
319 44 326 332 333
|
syl22anc |
|- ( A e. CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` 0 ) <-> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` S ) e. ( ( ( ( TopOpen ` CCfld ) |`t S ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) ) |
335 |
317 334
|
mpbird |
|- ( A e. CC -> ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
336 |
312
|
cnpresti |
|- ( ( ( 0 [,) +oo ) C_ CC /\ 0 e. ( 0 [,) +oo ) /\ ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` ( 0 [,) +oo ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
337 |
4 27 335 336
|
mp3an2i |
|- ( A e. CC -> ( ( x e. CC |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A x. x ) ) ^c ( 1 / x ) ) ) ) |` ( 0 [,) +oo ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
338 |
25 337
|
eqeltrd |
|- ( A e. CC -> ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
339 |
|
simpl |
|- ( ( A e. CC /\ k e. RR+ ) -> A e. CC ) |
340 |
|
rpcn |
|- ( k e. RR+ -> k e. CC ) |
341 |
340
|
adantl |
|- ( ( A e. CC /\ k e. RR+ ) -> k e. CC ) |
342 |
|
rpne0 |
|- ( k e. RR+ -> k =/= 0 ) |
343 |
342
|
adantl |
|- ( ( A e. CC /\ k e. RR+ ) -> k =/= 0 ) |
344 |
339 341 343
|
divcld |
|- ( ( A e. CC /\ k e. RR+ ) -> ( A / k ) e. CC ) |
345 |
|
addcl |
|- ( ( 1 e. CC /\ ( A / k ) e. CC ) -> ( 1 + ( A / k ) ) e. CC ) |
346 |
83 344 345
|
sylancr |
|- ( ( A e. CC /\ k e. RR+ ) -> ( 1 + ( A / k ) ) e. CC ) |
347 |
346 341
|
cxpcld |
|- ( ( A e. CC /\ k e. RR+ ) -> ( ( 1 + ( A / k ) ) ^c k ) e. CC ) |
348 |
|
oveq2 |
|- ( k = ( 1 / x ) -> ( A / k ) = ( A / ( 1 / x ) ) ) |
349 |
348
|
oveq2d |
|- ( k = ( 1 / x ) -> ( 1 + ( A / k ) ) = ( 1 + ( A / ( 1 / x ) ) ) ) |
350 |
|
id |
|- ( k = ( 1 / x ) -> k = ( 1 / x ) ) |
351 |
349 350
|
oveq12d |
|- ( k = ( 1 / x ) -> ( ( 1 + ( A / k ) ) ^c k ) = ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) |
352 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) = ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) |
353 |
327 347 351 205 352
|
rlimcnp3 |
|- ( A e. CC -> ( ( k e. RR+ |-> ( ( 1 + ( A / k ) ) ^c k ) ) ~~>r ( exp ` A ) <-> ( x e. ( 0 [,) +oo ) |-> if ( x = 0 , ( exp ` A ) , ( ( 1 + ( A / ( 1 / x ) ) ) ^c ( 1 / x ) ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) ) |
354 |
338 353
|
mpbird |
|- ( A e. CC -> ( k e. RR+ |-> ( ( 1 + ( A / k ) ) ^c k ) ) ~~>r ( exp ` A ) ) |