Metamath Proof Explorer


Theorem efrlim

Description: The limit of the sequence ( 1 + A / k ) ^ k is the exponential function. This is often taken as an alternate definition of the exponential function (see also dfef2 ). (Contributed by Mario Carneiro, 1-Mar-2015) Avoid ax-mulf . (Revised by GG, 19-Apr-2025)

Ref Expression
Hypothesis efrlim.1 S = 0 ball abs 1 A + 1
Assertion efrlim A k + 1 + A k k e A

Proof

Step Hyp Ref Expression
1 efrlim.1 S = 0 ball abs 1 A + 1
2 rge0ssre 0 +∞
3 ax-resscn
4 2 3 sstri 0 +∞
5 4 sseli x 0 +∞ x
6 simpll A x ¬ x = 0 A
7 1cnd A x ¬ x = 0 1
8 simplr A x ¬ x = 0 x
9 ax-1ne0 1 0
10 9 a1i A x ¬ x = 0 1 0
11 simpr A x ¬ x = 0 ¬ x = 0
12 11 neqned A x ¬ x = 0 x 0
13 6 7 8 10 12 divdiv2d A x ¬ x = 0 A 1 x = A x 1
14 mulcl A x A x
15 14 adantr A x ¬ x = 0 A x
16 15 div1d A x ¬ x = 0 A x 1 = A x
17 13 16 eqtrd A x ¬ x = 0 A 1 x = A x
18 17 oveq2d A x ¬ x = 0 1 + A 1 x = 1 + A x
19 18 oveq1d A x ¬ x = 0 1 + A 1 x 1 x = 1 + A x 1 x
20 19 ifeq2da A x if x = 0 e A 1 + A 1 x 1 x = if x = 0 e A 1 + A x 1 x
21 5 20 sylan2 A x 0 +∞ if x = 0 e A 1 + A 1 x 1 x = if x = 0 e A 1 + A x 1 x
22 21 mpteq2dva A x 0 +∞ if x = 0 e A 1 + A 1 x 1 x = x 0 +∞ if x = 0 e A 1 + A x 1 x
23 resmpt 0 +∞ x if x = 0 e A 1 + A x 1 x 0 +∞ = x 0 +∞ if x = 0 e A 1 + A x 1 x
24 4 23 ax-mp x if x = 0 e A 1 + A x 1 x 0 +∞ = x 0 +∞ if x = 0 e A 1 + A x 1 x
25 22 24 eqtr4di A x 0 +∞ if x = 0 e A 1 + A 1 x 1 x = x if x = 0 e A 1 + A x 1 x 0 +∞
26 0e0icopnf 0 0 +∞
27 26 a1i A 0 0 +∞
28 eqeq2 e A 1 = if A x = 0 e A 1 e A log 1 + A x A x if x = 0 e A 1 + A x 1 x = e A 1 if x = 0 e A 1 + A x 1 x = if A x = 0 e A 1 e A log 1 + A x A x
29 eqeq2 e A log 1 + A x A x = if A x = 0 e A 1 e A log 1 + A x A x if x = 0 e A 1 + A x 1 x = e A log 1 + A x A x if x = 0 e A 1 + A x 1 x = if A x = 0 e A 1 e A log 1 + A x A x
30 cnxmet abs ∞Met
31 0cnd A 0
32 abscl A A
33 peano2re A A + 1
34 32 33 syl A A + 1
35 0red A 0
36 absge0 A 0 A
37 32 ltp1d A A < A + 1
38 35 32 34 36 37 lelttrd A 0 < A + 1
39 34 38 elrpd A A + 1 +
40 39 rpreccld A 1 A + 1 +
41 40 rpxrd A 1 A + 1 *
42 blssm abs ∞Met 0 1 A + 1 * 0 ball abs 1 A + 1
43 30 31 41 42 mp3an2i A 0 ball abs 1 A + 1
44 1 43 eqsstrid A S
45 44 sselda A x S x
46 mul0or A x A x = 0 A = 0 x = 0
47 45 46 syldan A x S A x = 0 A = 0 x = 0
48 8 12 reccld A x ¬ x = 0 1 x
49 45 48 syldanl A x S ¬ x = 0 1 x
50 49 adantlr A x S A = 0 ¬ x = 0 1 x
51 50 1cxpd A x S A = 0 ¬ x = 0 1 1 x = 1
52 simplr A x S A = 0 ¬ x = 0 A = 0
53 52 oveq1d A x S A = 0 ¬ x = 0 A x = 0 x
54 45 ad2antrr A x S A = 0 ¬ x = 0 x
55 54 mul02d A x S A = 0 ¬ x = 0 0 x = 0
56 53 55 eqtrd A x S A = 0 ¬ x = 0 A x = 0
57 56 oveq2d A x S A = 0 ¬ x = 0 1 + A x = 1 + 0
58 1p0e1 1 + 0 = 1
59 57 58 eqtrdi A x S A = 0 ¬ x = 0 1 + A x = 1
60 59 oveq1d A x S A = 0 ¬ x = 0 1 + A x 1 x = 1 1 x
61 52 fveq2d A x S A = 0 ¬ x = 0 e A = e 0
62 ef0 e 0 = 1
63 61 62 eqtrdi A x S A = 0 ¬ x = 0 e A = 1
64 51 60 63 3eqtr4d A x S A = 0 ¬ x = 0 1 + A x 1 x = e A
65 64 ifeq2da A x S A = 0 if x = 0 e A 1 + A x 1 x = if x = 0 e A e A
66 ifid if x = 0 e A e A = e A
67 65 66 eqtrdi A x S A = 0 if x = 0 e A 1 + A x 1 x = e A
68 iftrue x = 0 if x = 0 e A 1 + A x 1 x = e A
69 68 adantl A x S x = 0 if x = 0 e A 1 + A x 1 x = e A
70 67 69 jaodan A x S A = 0 x = 0 if x = 0 e A 1 + A x 1 x = e A
71 mulrid A A 1 = A
72 71 ad2antrr A x S A = 0 x = 0 A 1 = A
73 72 fveq2d A x S A = 0 x = 0 e A 1 = e A
74 70 73 eqtr4d A x S A = 0 x = 0 if x = 0 e A 1 + A x 1 x = e A 1
75 47 74 sylbida A x S A x = 0 if x = 0 e A 1 + A x 1 x = e A 1
76 mulne0b A x A 0 x 0 A x 0
77 45 76 syldan A x S A 0 x 0 A x 0
78 df-ne A x 0 ¬ A x = 0
79 77 78 bitrdi A x S A 0 x 0 ¬ A x = 0
80 simprr A x S A 0 x 0 x 0
81 80 neneqd A x S A 0 x 0 ¬ x = 0
82 81 iffalsed A x S A 0 x 0 if x = 0 e A 1 + A x 1 x = 1 + A x 1 x
83 ax-1cn 1
84 45 14 syldan A x S A x
85 addcl 1 A x 1 + A x
86 83 84 85 sylancr A x S 1 + A x
87 86 adantr A x S A 0 x 0 1 + A x
88 eqid 1 ball abs 1 = 1 ball abs 1
89 88 dvlog2lem 1 ball abs 1 −∞ 0
90 eqid −∞ 0 = −∞ 0
91 90 logdmss −∞ 0 0
92 89 91 sstri 1 ball abs 1 0
93 eqid abs = abs
94 93 cnmetdval 1 + A x 1 1 + A x abs 1 = 1 + A x - 1
95 86 83 94 sylancl A x S 1 + A x abs 1 = 1 + A x - 1
96 pncan2 1 A x 1 + A x - 1 = A x
97 83 84 96 sylancr A x S 1 + A x - 1 = A x
98 97 fveq2d A x S 1 + A x - 1 = A x
99 95 98 eqtrd A x S 1 + A x abs 1 = A x
100 84 abscld A x S A x
101 34 adantr A x S A + 1
102 45 abscld A x S x
103 101 102 remulcld A x S A + 1 x
104 1red A x S 1
105 absmul A x A x = A x
106 45 105 syldan A x S A x = A x
107 32 adantr A x S A
108 107 33 syl A x S A + 1
109 45 absge0d A x S 0 x
110 107 lep1d A x S A A + 1
111 107 108 102 109 110 lemul1ad A x S A x A + 1 x
112 106 111 eqbrtrd A x S A x A + 1 x
113 0cn 0
114 93 cnmetdval x 0 x abs 0 = x 0
115 45 113 114 sylancl A x S x abs 0 = x 0
116 45 subid1d A x S x 0 = x
117 116 fveq2d A x S x 0 = x
118 115 117 eqtrd A x S x abs 0 = x
119 simpr A x S x S
120 119 1 eleqtrdi A x S x 0 ball abs 1 A + 1
121 30 a1i A x S abs ∞Met
122 41 adantr A x S 1 A + 1 *
123 0cnd A x S 0
124 elbl3 abs ∞Met 1 A + 1 * 0 x x 0 ball abs 1 A + 1 x abs 0 < 1 A + 1
125 121 122 123 45 124 syl22anc A x S x 0 ball abs 1 A + 1 x abs 0 < 1 A + 1
126 120 125 mpbid A x S x abs 0 < 1 A + 1
127 118 126 eqbrtrrd A x S x < 1 A + 1
128 38 adantr A x S 0 < A + 1
129 ltmuldiv2 x 1 A + 1 0 < A + 1 A + 1 x < 1 x < 1 A + 1
130 102 104 108 128 129 syl112anc A x S A + 1 x < 1 x < 1 A + 1
131 127 130 mpbird A x S A + 1 x < 1
132 100 103 104 112 131 lelttrd A x S A x < 1
133 99 132 eqbrtrd A x S 1 + A x abs 1 < 1
134 1rp 1 +
135 rpxr 1 + 1 *
136 134 135 mp1i A x S 1 *
137 1cnd A x S 1
138 elbl3 abs ∞Met 1 * 1 1 + A x 1 + A x 1 ball abs 1 1 + A x abs 1 < 1
139 121 136 137 86 138 syl22anc A x S 1 + A x 1 ball abs 1 1 + A x abs 1 < 1
140 133 139 mpbird A x S 1 + A x 1 ball abs 1
141 92 140 sselid A x S 1 + A x 0
142 eldifsni 1 + A x 0 1 + A x 0
143 141 142 syl A x S 1 + A x 0
144 143 adantr A x S A 0 x 0 1 + A x 0
145 45 adantr A x S A 0 x 0 x
146 145 80 reccld A x S A 0 x 0 1 x
147 87 144 146 cxpefd A x S A 0 x 0 1 + A x 1 x = e 1 x log 1 + A x
148 86 143 logcld A x S log 1 + A x
149 148 adantr A x S A 0 x 0 log 1 + A x
150 146 149 mulcomd A x S A 0 x 0 1 x log 1 + A x = log 1 + A x 1 x
151 simpll A x S A 0 x 0 A
152 simprl A x S A 0 x 0 A 0
153 151 152 dividd A x S A 0 x 0 A A = 1
154 153 oveq1d A x S A 0 x 0 A A x = 1 x
155 151 151 145 152 80 divdiv1d A x S A 0 x 0 A A x = A A x
156 154 155 eqtr3d A x S A 0 x 0 1 x = A A x
157 156 oveq2d A x S A 0 x 0 log 1 + A x 1 x = log 1 + A x A A x
158 84 adantr A x S A 0 x 0 A x
159 77 biimpa A x S A 0 x 0 A x 0
160 149 151 158 159 div12d A x S A 0 x 0 log 1 + A x A A x = A log 1 + A x A x
161 150 157 160 3eqtrd A x S A 0 x 0 1 x log 1 + A x = A log 1 + A x A x
162 161 fveq2d A x S A 0 x 0 e 1 x log 1 + A x = e A log 1 + A x A x
163 82 147 162 3eqtrd A x S A 0 x 0 if x = 0 e A 1 + A x 1 x = e A log 1 + A x A x
164 163 ex A x S A 0 x 0 if x = 0 e A 1 + A x 1 x = e A log 1 + A x A x
165 79 164 sylbird A x S ¬ A x = 0 if x = 0 e A 1 + A x 1 x = e A log 1 + A x A x
166 165 imp A x S ¬ A x = 0 if x = 0 e A 1 + A x 1 x = e A log 1 + A x A x
167 28 29 75 166 ifbothda A x S if x = 0 e A 1 + A x 1 x = if A x = 0 e A 1 e A log 1 + A x A x
168 167 mpteq2dva A x S if x = 0 e A 1 + A x 1 x = x S if A x = 0 e A 1 e A log 1 + A x A x
169 44 resmptd A x if x = 0 e A 1 + A x 1 x S = x S if x = 0 e A 1 + A x 1 x
170 1cnd A x S A x = 0 1
171 148 adantr A x S ¬ A x = 0 log 1 + A x
172 84 adantr A x S ¬ A x = 0 A x
173 simpr A x S ¬ A x = 0 ¬ A x = 0
174 173 neqned A x S ¬ A x = 0 A x 0
175 171 172 174 divcld A x S ¬ A x = 0 log 1 + A x A x
176 170 175 ifclda A x S if A x = 0 1 log 1 + A x A x
177 eqidd A x S if A x = 0 1 log 1 + A x A x = x S if A x = 0 1 log 1 + A x A x
178 eqidd A y e A y = y e A y
179 oveq2 y = if A x = 0 1 log 1 + A x A x A y = A if A x = 0 1 log 1 + A x A x
180 179 fveq2d y = if A x = 0 1 log 1 + A x A x e A y = e A if A x = 0 1 log 1 + A x A x
181 oveq2 if A x = 0 1 log 1 + A x A x = 1 A if A x = 0 1 log 1 + A x A x = A 1
182 181 fveq2d if A x = 0 1 log 1 + A x A x = 1 e A if A x = 0 1 log 1 + A x A x = e A 1
183 oveq2 if A x = 0 1 log 1 + A x A x = log 1 + A x A x A if A x = 0 1 log 1 + A x A x = A log 1 + A x A x
184 183 fveq2d if A x = 0 1 log 1 + A x A x = log 1 + A x A x e A if A x = 0 1 log 1 + A x A x = e A log 1 + A x A x
185 182 184 ifsb e A if A x = 0 1 log 1 + A x A x = if A x = 0 e A 1 e A log 1 + A x A x
186 180 185 eqtrdi y = if A x = 0 1 log 1 + A x A x e A y = if A x = 0 e A 1 e A log 1 + A x A x
187 176 177 178 186 fmptco A y e A y x S if A x = 0 1 log 1 + A x A x = x S if A x = 0 e A 1 e A log 1 + A x A x
188 168 169 187 3eqtr4d A x if x = 0 e A 1 + A x 1 x S = y e A y x S if A x = 0 1 log 1 + A x A x
189 eqidd A x S 1 + A x = x S 1 + A x
190 eqidd A y 1 ball abs 1 if y = 1 1 log y y 1 = y 1 ball abs 1 if y = 1 1 log y y 1
191 eqeq1 y = 1 + A x y = 1 1 + A x = 1
192 fveq2 y = 1 + A x log y = log 1 + A x
193 oveq1 y = 1 + A x y 1 = 1 + A x - 1
194 192 193 oveq12d y = 1 + A x log y y 1 = log 1 + A x 1 + A x - 1
195 191 194 ifbieq2d y = 1 + A x if y = 1 1 log y y 1 = if 1 + A x = 1 1 log 1 + A x 1 + A x - 1
196 140 189 190 195 fmptco A y 1 ball abs 1 if y = 1 1 log y y 1 x S 1 + A x = x S if 1 + A x = 1 1 log 1 + A x 1 + A x - 1
197 58 eqeq2i 1 + A x = 1 + 0 1 + A x = 1
198 137 84 123 addcand A x S 1 + A x = 1 + 0 A x = 0
199 197 198 bitr3id A x S 1 + A x = 1 A x = 0
200 97 oveq2d A x S log 1 + A x 1 + A x - 1 = log 1 + A x A x
201 199 200 ifbieq2d A x S if 1 + A x = 1 1 log 1 + A x 1 + A x - 1 = if A x = 0 1 log 1 + A x A x
202 201 mpteq2dva A x S if 1 + A x = 1 1 log 1 + A x 1 + A x - 1 = x S if A x = 0 1 log 1 + A x A x
203 196 202 eqtrd A y 1 ball abs 1 if y = 1 1 log y y 1 x S 1 + A x = x S if A x = 0 1 log 1 + A x A x
204 eqid TopOpen fld 𝑡 S = TopOpen fld 𝑡 S
205 eqid TopOpen fld = TopOpen fld
206 205 cnfldtopon TopOpen fld TopOn
207 206 a1i A TopOpen fld TopOn
208 1cnd A 1
209 207 207 208 cnmptc A x 1 TopOpen fld Cn TopOpen fld
210 id A A
211 207 207 210 cnmptc A x A TopOpen fld Cn TopOpen fld
212 207 cnmptid A x x TopOpen fld Cn TopOpen fld
213 205 mpomulcn u , v u v TopOpen fld × t TopOpen fld Cn TopOpen fld
214 213 a1i A u , v u v TopOpen fld × t TopOpen fld Cn TopOpen fld
215 oveq12 u = A v = x u v = A x
216 207 211 212 207 207 214 215 cnmpt12 A x A x TopOpen fld Cn TopOpen fld
217 205 addcn + TopOpen fld × t TopOpen fld Cn TopOpen fld
218 217 a1i A + TopOpen fld × t TopOpen fld Cn TopOpen fld
219 207 209 216 218 cnmpt12f A x 1 + A x TopOpen fld Cn TopOpen fld
220 204 207 44 219 cnmpt1res A x S 1 + A x TopOpen fld 𝑡 S Cn TopOpen fld
221 140 fmpttd A x S 1 + A x : S 1 ball abs 1
222 221 frnd A ran x S 1 + A x 1 ball abs 1
223 difss 0
224 92 223 sstri 1 ball abs 1
225 224 a1i A 1 ball abs 1
226 cnrest2 TopOpen fld TopOn ran x S 1 + A x 1 ball abs 1 1 ball abs 1 x S 1 + A x TopOpen fld 𝑡 S Cn TopOpen fld x S 1 + A x TopOpen fld 𝑡 S Cn TopOpen fld 𝑡 1 ball abs 1
227 206 222 225 226 mp3an2i A x S 1 + A x TopOpen fld 𝑡 S Cn TopOpen fld x S 1 + A x TopOpen fld 𝑡 S Cn TopOpen fld 𝑡 1 ball abs 1
228 220 227 mpbid A x S 1 + A x TopOpen fld 𝑡 S Cn TopOpen fld 𝑡 1 ball abs 1
229 blcntr abs ∞Met 0 1 A + 1 + 0 0 ball abs 1 A + 1
230 30 31 40 229 mp3an2i A 0 0 ball abs 1 A + 1
231 230 1 eleqtrrdi A 0 S
232 resttopon TopOpen fld TopOn S TopOpen fld 𝑡 S TopOn S
233 206 44 232 sylancr A TopOpen fld 𝑡 S TopOn S
234 toponuni TopOpen fld 𝑡 S TopOn S S = TopOpen fld 𝑡 S
235 233 234 syl A S = TopOpen fld 𝑡 S
236 231 235 eleqtrd A 0 TopOpen fld 𝑡 S
237 eqid TopOpen fld 𝑡 S = TopOpen fld 𝑡 S
238 237 cncnpi x S 1 + A x TopOpen fld 𝑡 S Cn TopOpen fld 𝑡 1 ball abs 1 0 TopOpen fld 𝑡 S x S 1 + A x TopOpen fld 𝑡 S CnP TopOpen fld 𝑡 1 ball abs 1 0
239 228 236 238 syl2anc A x S 1 + A x TopOpen fld 𝑡 S CnP TopOpen fld 𝑡 1 ball abs 1 0
240 cnelprrecn
241 logf1o log : 0 1-1 onto ran log
242 f1of log : 0 1-1 onto ran log log : 0 ran log
243 241 242 ax-mp log : 0 ran log
244 logrncn x ran log x
245 244 ssriv ran log
246 fss log : 0 ran log ran log log : 0
247 243 245 246 mp2an log : 0
248 fssres log : 0 1 ball abs 1 0 log 1 ball abs 1 : 1 ball abs 1
249 247 92 248 mp2an log 1 ball abs 1 : 1 ball abs 1
250 blcntr abs ∞Met 1 1 + 1 1 ball abs 1
251 30 83 134 250 mp3an 1 1 ball abs 1
252 ovex 1 y V
253 88 dvlog2 D log 1 ball abs 1 = y 1 ball abs 1 1 y
254 252 253 dmmpti dom log 1 ball abs 1 = 1 ball abs 1
255 251 254 eleqtrri 1 dom log 1 ball abs 1
256 eqid TopOpen fld 𝑡 1 ball abs 1 = TopOpen fld 𝑡 1 ball abs 1
257 253 fveq1i log 1 ball abs 1 1 = y 1 ball abs 1 1 y 1
258 oveq2 y = 1 1 y = 1 1
259 1div1e1 1 1 = 1
260 258 259 eqtrdi y = 1 1 y = 1
261 eqid y 1 ball abs 1 1 y = y 1 ball abs 1 1 y
262 1ex 1 V
263 260 261 262 fvmpt 1 1 ball abs 1 y 1 ball abs 1 1 y 1 = 1
264 251 263 ax-mp y 1 ball abs 1 1 y 1 = 1
265 257 264 eqtr2i 1 = log 1 ball abs 1 1
266 265 a1i y 1 ball abs 1 1 = log 1 ball abs 1 1
267 fvres y 1 ball abs 1 log 1 ball abs 1 y = log y
268 fvres 1 1 ball abs 1 log 1 ball abs 1 1 = log 1
269 251 268 mp1i y 1 ball abs 1 log 1 ball abs 1 1 = log 1
270 log1 log 1 = 0
271 269 270 eqtrdi y 1 ball abs 1 log 1 ball abs 1 1 = 0
272 267 271 oveq12d y 1 ball abs 1 log 1 ball abs 1 y log 1 ball abs 1 1 = log y 0
273 92 sseli y 1 ball abs 1 y 0
274 eldifsn y 0 y y 0
275 273 274 sylib y 1 ball abs 1 y y 0
276 logcl y y 0 log y
277 275 276 syl y 1 ball abs 1 log y
278 277 subid1d y 1 ball abs 1 log y 0 = log y
279 272 278 eqtr2d y 1 ball abs 1 log y = log 1 ball abs 1 y log 1 ball abs 1 1
280 279 oveq1d y 1 ball abs 1 log y y 1 = log 1 ball abs 1 y log 1 ball abs 1 1 y 1
281 266 280 ifeq12d y 1 ball abs 1 if y = 1 1 log y y 1 = if y = 1 log 1 ball abs 1 1 log 1 ball abs 1 y log 1 ball abs 1 1 y 1
282 281 mpteq2ia y 1 ball abs 1 if y = 1 1 log y y 1 = y 1 ball abs 1 if y = 1 log 1 ball abs 1 1 log 1 ball abs 1 y log 1 ball abs 1 1 y 1
283 256 205 282 dvcnp log 1 ball abs 1 : 1 ball abs 1 1 ball abs 1 1 dom log 1 ball abs 1 y 1 ball abs 1 if y = 1 1 log y y 1 TopOpen fld 𝑡 1 ball abs 1 CnP TopOpen fld 1
284 255 283 mpan2 log 1 ball abs 1 : 1 ball abs 1 1 ball abs 1 y 1 ball abs 1 if y = 1 1 log y y 1 TopOpen fld 𝑡 1 ball abs 1 CnP TopOpen fld 1
285 240 249 224 284 mp3an y 1 ball abs 1 if y = 1 1 log y y 1 TopOpen fld 𝑡 1 ball abs 1 CnP TopOpen fld 1
286 oveq2 x = 0 A x = A 0
287 286 oveq2d x = 0 1 + A x = 1 + A 0
288 eqid x S 1 + A x = x S 1 + A x
289 ovex 1 + A 0 V
290 287 288 289 fvmpt 0 S x S 1 + A x 0 = 1 + A 0
291 231 290 syl A x S 1 + A x 0 = 1 + A 0
292 mul01 A A 0 = 0
293 292 oveq2d A 1 + A 0 = 1 + 0
294 293 58 eqtrdi A 1 + A 0 = 1
295 291 294 eqtrd A x S 1 + A x 0 = 1
296 295 fveq2d A TopOpen fld 𝑡 1 ball abs 1 CnP TopOpen fld x S 1 + A x 0 = TopOpen fld 𝑡 1 ball abs 1 CnP TopOpen fld 1
297 285 296 eleqtrrid A y 1 ball abs 1 if y = 1 1 log y y 1 TopOpen fld 𝑡 1 ball abs 1 CnP TopOpen fld x S 1 + A x 0
298 cnpco x S 1 + A x TopOpen fld 𝑡 S CnP TopOpen fld 𝑡 1 ball abs 1 0 y 1 ball abs 1 if y = 1 1 log y y 1 TopOpen fld 𝑡 1 ball abs 1 CnP TopOpen fld x S 1 + A x 0 y 1 ball abs 1 if y = 1 1 log y y 1 x S 1 + A x TopOpen fld 𝑡 S CnP TopOpen fld 0
299 239 297 298 syl2anc A y 1 ball abs 1 if y = 1 1 log y y 1 x S 1 + A x TopOpen fld 𝑡 S CnP TopOpen fld 0
300 203 299 eqeltrrd A x S if A x = 0 1 log 1 + A x A x TopOpen fld 𝑡 S CnP TopOpen fld 0
301 207 207 210 cnmptc A y A TopOpen fld Cn TopOpen fld
302 207 cnmptid A y y TopOpen fld Cn TopOpen fld
303 oveq12 u = A v = y u v = A y
304 207 301 302 207 207 214 303 cnmpt12 A y A y TopOpen fld Cn TopOpen fld
305 efcn exp : cn
306 205 cncfcn1 cn = TopOpen fld Cn TopOpen fld
307 305 306 eleqtri exp TopOpen fld Cn TopOpen fld
308 307 a1i A exp TopOpen fld Cn TopOpen fld
309 207 304 308 cnmpt11f A y e A y TopOpen fld Cn TopOpen fld
310 176 fmpttd A x S if A x = 0 1 log 1 + A x A x : S
311 310 231 ffvelcdmd A x S if A x = 0 1 log 1 + A x A x 0
312 unicntop = TopOpen fld
313 312 cncnpi y e A y TopOpen fld Cn TopOpen fld x S if A x = 0 1 log 1 + A x A x 0 y e A y TopOpen fld CnP TopOpen fld x S if A x = 0 1 log 1 + A x A x 0
314 309 311 313 syl2anc A y e A y TopOpen fld CnP TopOpen fld x S if A x = 0 1 log 1 + A x A x 0
315 cnpco x S if A x = 0 1 log 1 + A x A x TopOpen fld 𝑡 S CnP TopOpen fld 0 y e A y TopOpen fld CnP TopOpen fld x S if A x = 0 1 log 1 + A x A x 0 y e A y x S if A x = 0 1 log 1 + A x A x TopOpen fld 𝑡 S CnP TopOpen fld 0
316 300 314 315 syl2anc A y e A y x S if A x = 0 1 log 1 + A x A x TopOpen fld 𝑡 S CnP TopOpen fld 0
317 188 316 eqeltrd A x if x = 0 e A 1 + A x 1 x S TopOpen fld 𝑡 S CnP TopOpen fld 0
318 205 cnfldtop TopOpen fld Top
319 318 a1i A TopOpen fld Top
320 205 cnfldtopn TopOpen fld = MetOpen abs
321 320 blopn abs ∞Met 0 1 A + 1 * 0 ball abs 1 A + 1 TopOpen fld
322 30 31 41 321 mp3an2i A 0 ball abs 1 A + 1 TopOpen fld
323 1 322 eqeltrid A S TopOpen fld
324 isopn3i TopOpen fld Top S TopOpen fld int TopOpen fld S = S
325 318 323 324 sylancr A int TopOpen fld S = S
326 231 325 eleqtrrd A 0 int TopOpen fld S
327 efcl A e A
328 327 ad2antrr A x x = 0 e A
329 83 15 85 sylancr A x ¬ x = 0 1 + A x
330 329 48 cxpcld A x ¬ x = 0 1 + A x 1 x
331 328 330 ifclda A x if x = 0 e A 1 + A x 1 x
332 331 fmpttd A x if x = 0 e A 1 + A x 1 x :
333 312 312 cnprest TopOpen fld Top S 0 int TopOpen fld S x if x = 0 e A 1 + A x 1 x : x if x = 0 e A 1 + A x 1 x TopOpen fld CnP TopOpen fld 0 x if x = 0 e A 1 + A x 1 x S TopOpen fld 𝑡 S CnP TopOpen fld 0
334 319 44 326 332 333 syl22anc A x if x = 0 e A 1 + A x 1 x TopOpen fld CnP TopOpen fld 0 x if x = 0 e A 1 + A x 1 x S TopOpen fld 𝑡 S CnP TopOpen fld 0
335 317 334 mpbird A x if x = 0 e A 1 + A x 1 x TopOpen fld CnP TopOpen fld 0
336 312 cnpresti 0 +∞ 0 0 +∞ x if x = 0 e A 1 + A x 1 x TopOpen fld CnP TopOpen fld 0 x if x = 0 e A 1 + A x 1 x 0 +∞ TopOpen fld 𝑡 0 +∞ CnP TopOpen fld 0
337 4 27 335 336 mp3an2i A x if x = 0 e A 1 + A x 1 x 0 +∞ TopOpen fld 𝑡 0 +∞ CnP TopOpen fld 0
338 25 337 eqeltrd A x 0 +∞ if x = 0 e A 1 + A 1 x 1 x TopOpen fld 𝑡 0 +∞ CnP TopOpen fld 0
339 simpl A k + A
340 rpcn k + k
341 340 adantl A k + k
342 rpne0 k + k 0
343 342 adantl A k + k 0
344 339 341 343 divcld A k + A k
345 addcl 1 A k 1 + A k
346 83 344 345 sylancr A k + 1 + A k
347 346 341 cxpcld A k + 1 + A k k
348 oveq2 k = 1 x A k = A 1 x
349 348 oveq2d k = 1 x 1 + A k = 1 + A 1 x
350 id k = 1 x k = 1 x
351 349 350 oveq12d k = 1 x 1 + A k k = 1 + A 1 x 1 x
352 eqid TopOpen fld 𝑡 0 +∞ = TopOpen fld 𝑡 0 +∞
353 327 347 351 205 352 rlimcnp3 A k + 1 + A k k e A x 0 +∞ if x = 0 e A 1 + A 1 x 1 x TopOpen fld 𝑡 0 +∞ CnP TopOpen fld 0
354 338 353 mpbird A k + 1 + A k k e A